对一个服务器程序想统计每秒可以处理多少数据包 要如何做?答案是用处理数据包的总数 除以累记处理数据包用的时间 这里要指出的是 运行一段程序 使用的cpu时间 跟实际运行的时间是不一样的 附例如下
private void ShowRunTime() { TimeSpan ts = Process GetCurrentProcess() TotalProcessorTime Stopwatch s = new Stopwatch() s Start()
int Circles = for (int i = i <Circles++i) { Console WriteLine(i ToString()) }
double Msecs = Process GetCurrentProcess() TotalProcessorTime Subtract(ts ) TotalMilliseconds s Stop()
Console WriteLine(string Format( 循环次数:{ } CPU时间(毫秒)={ } 实际时间(毫秒)={ } Circles Msecs s Elapsed TotalMilliseconds s ElapsedTicks)) Console WriteLine(string Format( tick = { }毫秒 s Elapsed TotalMilliseconds / s Elapsed Ticks)) } 程序输出如下
循环次数: CPU时间(毫秒)= 实际时间(毫秒)= tick = 毫秒
可以看出在这个例子中 两者差距比较大 其原因如下
)Windows是多任务 *** 作系统 按照线程为单位对cpu时间轮询分配 即一个程序运行的中途 可能被剥夺cpu资源 供其他程序运行
)程序本身会有不占用cpu时间的等待过程 这个等待可能是我们程序主动的 比如启动一个进程 然后等待进程的结束 也可能是我们没有意识到的 如例子的Console WriteLine方法 猜想其内部进行了一系列的异步I/O *** 作然后等待 *** 作的完成 这其间并没有占用调用进程的cpu时间 但耗费了很多等待时间
总结
)性能的测量 应该用程序运行时间来测量 当然也需要使用cpu时间作为参考 如果两者差距很大 需要考虑为何出现这种情况
lishixinzhi/Article/program/net/201311/134001. 使用装饰器来衡量函数执行时间
有一个简单方法,那就是定义一个装饰器来测量函数的执行时间,并输出结果:
import time
from functoolsimport wraps
import random
def fn_timer(function):
@wraps(function)
def function_timer(*args, **kwargs):
t0= time.time()
result= function(*args, **kwargs)
t1= time.time()
print("Total time running %s: %s seconds" %
(function.__name__, str(t1- t0))
)
return result
return function_timer
@fn_timer
def random_sort(n):
return sorted([random.random() for i in range(n)])
if __name__== "__main__":
random_sort(2000000)
输出:Total time running random_sort: 0.6598007678985596 seconds
使用方式的话,就是在要监控的函数定义上面加上 @fn_timer 就行了
或者
# 可监控程序运行时间
import time
import random
def clock(func):
def wrapper(*args, **kwargs):
start_time= time.time()
result= func(*args, **kwargs)
end_time= time.time()
print("共耗时: %s秒" % round(end_time- start_time, 5))
return result
return wrapper
@clock
def random_sort(n):
return sorted([random.random() for i in range(n)])
if __name__== "__main__":
random_sort(2000000)
输出结果:共耗时: 0.65634秒
2. 使用timeit模块
另一种方法是使用timeit模块,用来计算平均时间消耗。
执行下面的脚本可以运行该模块。
这里的timing_functions是Python脚本文件名称。
在输出的末尾,可以看到以下结果:4 loops, best of 5: 2.08 sec per loop
这表示测试了4次,平均每次测试重复5次,最好的测试结果是2.08秒。
如果不指定测试或重复次数,默认值为10次测试,每次重复5次。
3. 使用Unix系统中的time命令
然而,装饰器和timeit都是基于Python的。在外部环境测试Python时,unix time实用工具就非常有用。
运行time实用工具:
输出结果为:
Total time running random_sort: 1.3931210041 seconds
real 1.49
user 1.40
sys 0.08
第一行来自预定义的装饰器,其他三行为:
real表示的是执行脚本的总时间
user表示的是执行脚本消耗的CPU时间。
sys表示的是执行内核函数消耗的时间。
注意:根据维基百科的定义,内核是一个计算机程序,用来管理软件的输入输出,并将其翻译成CPU和其他计算机中的电子设备能够执行的数据处理指令。
因此,Real执行时间和User+Sys执行时间的差就是消耗在输入/输出和系统执行其他任务时消耗的时间。
4. 使用cProfile模块
5. 使用line_profiler模块
6. 使用memory_profiler模块
7. 使用guppy包
现象描述:
1、time.clock 在win系统和linux系统下对相同程序的计时结果不一致
2、到底应该用什么时间计时?为什么用time.time与time.clock计时会有那么大的差异
在计算机领域有多种时间。
第一种称作CPU时间或执行时间,用于测量在执行一个程序时CPU所花费的时间。第二种称作挂钟时间,测量执行一个程序时的总时间。挂钟时间也被称作流逝时间或运行时间。与CPU时间相比,挂钟时间通常长些,因为CPU执行测量的程序可能同时还在执行其它程序的指令。
另一个重要概念是所谓的系统时间,由系统时钟测量。系统时间表示计算机系统时间传递的概念。要记住系统时钟是可以由 *** 作系统修改的,就是修改系统时间。
在Unix系统上,time.time的作用与Windows相同,但time.clock的意义不同。
在Unix系统上,time.clock以秒为单位返回当前处理器时间,例如,执行当前线程所花费的CPU时间。而在Windows上,它是以秒为单位的返回自首次调用该函数以来所流逝的系统时间。
以我遇到的Ubuntu系统上运行time.time和time.clock的例子:
time.time()显示系统时间过去大概1秒,而time.clock()显示花费在当前进程上的CPU时间只有于1毫秒。
而win下time.time()和time.clock()显示系统时间都是大致过去了1秒
在测量程序准确性能时应该使用哪一个呢?
这要视情况而定。如果程序运行的系统能够提供足够的资源给程序,例如,一个运行基于Python的web应用程序的web服务器,则使用time.clock()来测量程序会更有意义,因这个web应用程序可能是服务器上的主要程序 。如果程序运行的系统上还同时运行着其它大量程序,则使用time.time()进行测量会更有意义。 如果不是这样,就应该使用基于挂钟的计时器来测量程序的性能,因为这样通常能反应程序的环境。
放结论,一般情况下:
1、win用time.clock或time.time
2、linux 下用time.time 或 datetime.datetime.now().timestamp()
【1】(重要)https://blog.csdn.net/ao985438294363006/article/details/101349790 Python测量时间,用time.time还是time.clock
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)