function [shat Ahat2] = nc_fastica_svd(xold,typeStr,N)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% non-circular complex FastICA算法,基于Newton迭代法,类似与fastICA
% ************************input***************************
% xold:混合信号,m*n,m为阵元数,n为快拍数
% typeStr: 非线性函数,'log', 'kurt', or 'sqrt'
% **************************output**************************
% Ahat:解混矩阵
% shat: 估计的源信号
% ********************************************************
% Reference
% Mike Novey and T. Adali, "On Extending the complex FastICA algorithm
% to noncircular sources" in
% (To appear 2007/2008) IEEE Journel on Signal Processing.,
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
type = 0
if strcmp(typeStr,'log') == 1
type = 1
elseif strcmp(typeStr,'kurt') == 1
type = 2
elseif strcmp(typeStr,'sqrt') == 1
type = 3
end
tol = 1e-5
a2 = 0.1
defl = 1% components are estimated one by one in a deflationary mannerset this to 0 if you want them all estimated simultaneously
maxcounter = 50
[n,m] = size(xold)
% Whitening of s:
yyy = zeros(1,m)
[Ex, Dx] = svd(cov(xold'))
E = Ex(:,1:N)
D = Dx(1:N,1:N)
Q = mtimes(sqrt(inv(D)),E')
x = Q * xold
%Pseudo-covariance
pC = (x*transpose(x))/m
% FIXED POINT ALGORITHM
W = eye(N)
Wold = zeros(N)
k = 0
while (norm(abs(Wold'*W)-eye(N),'fro')>(N*1e-12) &&k <15*N)
k = k+1
Wold = W
for kk=1:N %Loop thru sources
yy = W(:,kk)'*x
absy =abs(yy).^2
%%Fixed point
if type == 1 %%log
g = 1./(a2 + absy)
gp = -1./(a2 + absy).^2
elseif type == 2 %Kurt
g = absy
gp = ones(size(absy))
elseif type == 3 %sqrt
g = 1./(2*sqrt(a2 + absy))
gp = -1./(4*(a2 + absy).^(3/2))
end
gRad = mean(ones(N,1)*(g.*conj(yy)).*x,2)
ggg = mean(gp.*absy + g)
B = mean(gp .* conj(yy).^2)*pC
W(:,kk) = Wold(:,kk)*(ggg) -(gRad) + (B*conj(Wold(:,kk)))
end
%Orthonormalization
[E,D] = eig(W'*W)
W = W * E * inv(sqrt(D)) * E'
end%Loop thru sources
n_iteration = k
shat = W'*x%Estimated sources
% Ahat1 = inv(Q)*W
Ahat2 = W'*Q
这个是NC-fastica,可以用。稍微注释了些
原始程序,不知道是谁写的了
您好, 这样的:一、FastICA算法的基本步骤:
1. 对观测数据进行中心化,使它的均值为0;
2. 对数据进行白化,。
3. 选择需要估计的分量的个数,设迭代次数
4. 选择一个初始权矢量(随机的)。
5. 令,非线性函数的选取见前文。
6. 。
7. 令。
8. 假如不收敛的话,返回第5步。
9.令,如果,返回第4步。
二.MATLAB源程序及说明:
%下程序为ICA的调用函数,输入为观察的信号,输出为解混后的信号
function Z=ICA(X)
%-----------去均值---------
[M,T] = size(X)%获取输入矩阵的行/列数,行数为观测数据的数目,列数为采样点数
average= mean(X')' %均值
for i=1:M
X(i,:)=X(i,:)-average(i)*ones(1,T)
end
%---------白化/球化------
Cx = cov(X',1) %计算协方差矩阵Cx
[eigvector,eigvalue] = eig(Cx)%计算Cx的特征值和特征向量
W=eigvalue^(-1/2)*eigvector' %白化矩阵
Z=W*X %正交矩阵
%----------迭代-------
Maxcount=10000 %最大迭代次数
Critical=0.00001 %判断是否收敛
m=M %需要估计的分量的个数
W=rand(m)
for n=1:m
WP=W(:,n) %初始权矢量(任意)
% Y=WP'*Z
% G=Y.^3%G为非线性函数,可取y^3等
% GG=3*Y.^2 %G的导数
count=0
LastWP=zeros(m,1)
W(:,n)=W(:,n)/norm(W(:,n))
while abs(WP-LastWP)&abs(WP+LastWP)>Critical
count=count+1 %迭代次数
LastWP=WP %上次迭代的值
% WP=1/T*Z*((LastWP'*Z).^3)'-3*LastWP
for i=1:m
WP(i)=mean(Z(i,:).*(tanh((LastWP)'*Z)))-(mean(1-(tanh((LastWP))'*Z).^2)).*LastWP(i)
end
WPP=zeros(m,1)
for j=1:n-1
WPP=WPP+(WP'*W(:,j))*W(:,j)
end
WP=WP-WPP
WP=WP/(norm(WP))
if count==Maxcount
fprintf('未找到相应的信号)
return
end
end
W(:,n)=WP
end
Z=W'*Z
%以下为主程序,主要为原始信号的产生,观察信号和解混信号的作图
clear allclc
N=200n=1:N%N为采样点数
s1=2*sin(0.02*pi*n)%正弦信号
t=1:Ns2=2*square(100*t,50)%方波信号
a=linspace(1,-1,25)s3=2*[a,a,a,a,a,a,a,a]%锯齿信号
s4=rand(1,N)%随机噪声
S=[s1s2s3s4]%信号组成4*N
A=rand(4,4)
X=A*S%观察信号
%源信号波形图
figure(1)subplot(4,1,1)plot(s1)axis([0 N -5,5])title('源信号')
subplot(4,1,2)plot(s2)axis([0 N -5,5])
subplot(4,1,3)plot(s3)axis([0 N -5,5])
subplot(4,1,4)plot(s4)xlabel('Time/ms')
%观察信号(混合信号)波形图
figure(2)subplot(4,1,1)plot(X(1,:))title('观察信号(混合信号)')
subplot(4,1,2)plot(X(2,:))
subplot(4,1,3)plot(X(3,:))subplot(4,1,4)plot(X(4,:))
Z=ICA(X)
figure(3)subplot(4,1,1)plot(Z(1,:))title('解混后的信号')
subplot(4,1,2)plot(Z(2,:))
subplot(4,1,3)plot(Z(3,:))
subplot(4,1,4)plot(Z(4,:))xlabel('Time/ms')
参数含义: Mlmfile一接受该表单参数的MATLAB程序。 mlid 一进程的唯一标识。 mldir 一MATLAB程序的路径。 MATLAB程序生成HTML文件 1. 对输出变童的处理 MATLAB程序将输人变量进行处理后,计算得到结果,将其写入结构outstruct中。比如计算结果... http://hi.baidu.com/pigchan/blog/item/8ae3bcfb07dba8116d22ebdc.htmlREGRESS Multiple linear regression using least squares.B = REGRESS(Y,X) returns the vector B of regression coefficients in the
linear model Y = X*B. X is an n-by-p design matrix, with rows
corresponding to observations and columns to predictor variables. Y is
an n-by-1 vector of response observations.
REGRESS是用最小二乘法进行线性回归。
B是回归系数,Y是因变量,X是自变量数组。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)