爬山算法(Hill Climbing)解决旅行商问题(TSP)

爬山算法(Hill Climbing)解决旅行商问题(TSP),第1张

旅行商问题 TSP(Travelling Salesman Problem)是数学领域中著名问题之一。

TSP问题被证明是 NP完全问题 ,这类问题不能用精确算法实现,而需要使用相似算法。

TSP问题分为两类: 对称TSP (Symmetric TSP)以及 非对称TSP (Asymmetric TSP)

本文解决的是对称TSP

假设:A表示城市A,B表示城市B,D(A->B)为城市A到城市B的距离,同理D(B->A)为城市B到城市A的距离

对称TSP中,D(A->B) = D(B->A),城市间形成无向图

非对称TSP中,D(A->B) ≠ D(B->A),城市间形成有向图

现实生活中,可能出现单行线、交通事故、机票往返价格不同等情况,均可以打破对称性。

爬山算法是一种局部择优的方法,采用启发式方法。直观的解释如下图:

爬山算法,顾名思义就是 爬山 ,找到第一个山峰的时候就停止,作为算法的输出结果。所以,爬山算法容易把局部最优解A作为算法的输出,而我们的目的是找到全局最优解B。

如下图所示,尽管在这个图中的许多局部极大值,仍然可以使用 模拟退火算法(Simulated Annealing) 发现全局最大值。

必要解释详见注释

此处根据经纬度计算城市间距离的公式,请参考 Calculate distance between two latitude-longitude points? (Haversine formula)

此处初始化数据源可以使用 TSPLIB 中所提供的数据,此程序大致阐述爬山算法的实现。

编写于一个失眠夜

菜鸟一枚,欢迎评论区相互交流,加速你我成长•ᴗ•。

我在百度上找的!~~

简介

爬山算法是一种局部择优的方法,采用启发式方法,是对深度优先搜索的一种改进,它利用反馈信息帮助生成解的决策。 属于人工智能算法的一种。

算法:

function HILL-CLIMBING(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current <- MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor <- a highest-valued successor of current

if VALUE[neighbor]<= VALUE[current] then return STATE[current]

current <- neighbor

算法解释:

从当前的节点开始,和周围的邻居节点的值进行比较。 如果当前节点是最大的,那么返回当前节点,作为最大值(既山峰最高点);反之就用最高的邻居节点来,替换当前节点,从而实现向山峰的高处攀爬的目的。如此循环直到达到最高点。

算法优缺点

优点

避免遍历,通过启发选择部分节点,从而达到提高效率的目的。

缺点

因为不是全面搜索,所以结果可能不是最佳。

爬山算法一般存在以下问题:

1)、局部最大:某个节点比周围任何一个邻居都高,但是它却不是整个问题的最高点。

2)、高地:也称为平顶,搜索一旦到达高地,就无法确定搜索最佳方向,会产生随机走动,使得搜索效率降低。

3)、山脊:搜索可能会在山脊的两面来回震荡,前进步伐很小。

其他相关算法

stochastic hill climbing

First-choice hill climbing

Ramdom-restart hill climbing

Simulated annealing search

Local beam search

如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请 编辑词条

《混乱》

这本书提到了一个非常有效的算法,

叫爬山算法。

什么叫爬山算法?

(注:爬山算法是人工智能算法的一种,

其原理是把你随机地抛在地球上的一个点,抛在那个点以后,

你就近在最近的几公里之内寻找最高点,然后找到最高点之后,

立刻站到这个最高点上去,再在最近的几公里之内寻找最高点。)

用计算机模拟我们的人生,

我们的人生就是那个屏幕上,

现在屏幕中所有的坐标、高度都未知,

然后看看谁能用最快的方法找到这个屏幕上的最高点。

用什么样的方法找到最高点?

全球大量的计算机编程高手开始设计这套逻辑,

有的人沿着边走,有的人直接到中心,有人用交叉、画五角星法……

各种各样的方法,到最后发现,

最优秀、最快能够找到最高点的算法只有一个,

这个算法被称作爬山算法。

它的方法是什么?

就是在整个屏幕上随机一抛,

让这个点落在任何一个地方,然后在能力范围之内搜索,

在能力范围之内尽量找到周围最高的高度,找到最高的高度以后,

以这个最高的高度为圆心再找周围最高的高度,然后依次循环(

找最高点周围的下一个最高点),尽可能地找到最高的高点。

如果你今天特别倒霉,掉到一片沙漠中间,

这个沙漠周围的高度都差不多,没有特别高的高度,那该怎么办?

这时候需要重启,拿起来随机的一抛,

重启到另外一个地方再找另外的高度。

爬山算法里面有两个核心的点:

第一个点,

是你要接受随机的一抛,

你要接受有不确定性的发生;

第二个点,

是无论命运把你抛到什么地方,

你都要努力地展开搜索,

尽可能地做到最好,尽可能地找到最高的高点。

这就是爬山算法的精髓。

使用爬山算法探索一片屏幕,到最后发现这种方法是最快的。

就是要学会拥抱不确定性。

人生所有的烦恼、痛苦,

都是来自于我们对不确定性的抗拒。

我们希望我们的孩子按照一个模式成长,

我们希望我们的工作按照一个模式发展,

我们希望我们创业做的公司,

能够按照一个节奏安全一个模式发展,

是这些抗拒给我们带来大量的烦恼。

但是实际上你唯一需要做的事,是拥抱不确定性。

当不确定性发生、命运将你随机一抛的时候,

你能够随时随地、立刻展开最好的努力,

而不是待在原地拼命地抱怨,

拼命地对标,拼命地去维权,

反而这些东西浪费了我们太多的时间。

作者  | 樊登

来源  | 笔记侠(ID:Notesman)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8048663.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-13
下一篇 2023-04-13

发表评论

登录后才能评论

评论列表(0条)

保存