from numpy import *
import time
import matplotlib.pyplot as plt
# calculate Euclidean distance
def euclDistance(vector1, vector2):
return sqrt(sum(power(vector2 - vector1, 2)))
# init centroids with random samples
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
# k-means cluster
def kmeans(dataSet, k):
numSamples = dataSet.shape[0]
# first column stores which cluster this sample belongs to,
# second column stores the error between this sample and its centroid
clusterAssment = mat(zeros((numSamples, 2)))
clusterChanged = True
## step 1: init centroids
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
## for each sample
for i in xrange(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance <minDist:
minDist = distance
minIndex = j
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
## step 4: update centroids
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
print 'Congratulations, cluster complete!'
return centroids, clusterAssment
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
if k >len(mark):
print "Sorry! Your k is too large! please contact Zouxy"
return 1
# draw all samples
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
有一个函数叫subclust,你可以这样调用function [centers,sigmas] = subclust(X,radii,xBounds,options)其中OPTIONS(1): The squash factor, is used to multiply the RADII values to determine the neighborhood of a cluster center within which
the existence of other cluster centers are discouraged.% OPTIONS(2): The accept ratio, sets the potential, as a fraction of the
potential of the first cluster center, above which another data point will be accepted as a cluster center.
% OPTIONS(3): The reject ratio sets the potential, as a fraction of the potential of the first cluster center, below which a data point will be rejected as a cluster center.
% OPTIONS(4): Displays progress information unless it is set to zero.
Examples
X1 = 10*rand(50,1)
X2 = 5*rand(50,1)
X3 = 20*rand(50,1)-10
X = [X1 X2 X3]
[C] = subclust(X,0.5)
一、层次聚类
1)距离和相似系数
r语言中使用dist(x, method = "euclidean",diag = FALSE, upper = FALSE, p = 2) 来计算距离。其中x是样本矩阵或者数据框。method表示计算哪种距离。method的取值有:
euclidean 欧几里德距离,就是平方再开方。
maximum 切比雪夫距离
manhattan 绝对值距离
canberra Lance 距离
minkowski 明科夫斯基距离,使用时要指定p值
binary 定性变量距离.
定性变量距离: 记m个项目里面的 0:0配对数为m0 ,1:1配对数为m1,不能配对数为m2,距离=m1/(m1+m2)
diag 为TRUE的时候给出对角线上的距离。upper为TURE的时候给出上三角矩阵上的值。
r语言中使用scale(x, center = TRUE, scale = TRUE) 对数据矩阵做中心化和标准化变换。
如只中心化 scale(x,scale=F) ,
r语言中使用sweep(x, MARGIN, STATS, FUN="-", ...) 对矩阵进行运算。MARGIN为1,表示行的方向上进行运算,为2表示列的方向上运算。STATS是运算的参数。FUN为运算函数,默认是减法。下面利用sweep对矩阵x进行极差标准化变换
?
1
2
3
>center <-sweep(x, 2, apply(x, 2, mean)) #在列的方向上减去均值。
>R <-apply(x, 2, max) -apply(x,2,min) #算出极差,即列上的最大值-最小值
>x_star <-sweep(center, 2, R, "/") #把减去均值后的矩阵在列的方向上除以极差向量
?
1
2
3
>center <-sweep(x, 2, apply(x, 2, min)) #极差正规化变换
>R <-apply(x, 2, max) -apply(x,2,min)
>x_star <-sweep(center, 2, R, "/")
有时候我们不是对样本进行分类,而是对变量进行分类。这时候,我们不计算距离,而是计算变量间的相似系数。常用的有夹角和相关系数。
r语言计算两向量的夹角余弦:
?
1
2
y <-scale(x, center =F, scale =T)/sqrt(nrow(x)-1)
C <-t(y) %*%y
相关系数用cor函数
2)层次聚类法
层次聚类法。先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最段距离。。。
r语言中使用hclust(d, method = "complete", members=NULL) 来进行层次聚类。
其中d为距离矩阵。
method表示类的合并方法,有:
single 最短距离法
complete 最长距离法
median 中间距离法
mcquitty 相似法
average 类平均法
centroid 重心法
ward 离差平方和法
?
1
2
3
4
5
6
7
8
> x <-c(1,2,6,8,11) #试用一下
> dim(x) <-c(5,1)
> d <-dist(x)
> hc1 <-hclust(d,"single")
> plot(hc1)
> plot(hc1,hang=-1,type="tirangle") #hang小于0时,树将从底部画起。
#type = c("rectangle", "triangle"),默认树形图是方形的。另一个是三角形。
#horiz TRUE 表示竖着放,FALSE表示横着放。
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
> z <-scan()
1: 1.0000.8460.8050.8590.4730.3980.3010.382
9: 0.8461.0000.8810.8260.3760.3260.2770.277
17: 0.8050.8811.0000.8010.3800.3190.2370.345
25: 0.8590.8260.8011.0000.4360.3290.3270.365
33: 0.4730.3760.3800.4361.0000.7620.7300.629
41: 0.3980.3260.3190.3290.7621.0000.5830.577
49: 0.3010.2770.2370.3270.7300.5831.0000.539
57: 0.3820.4150.3450.3650.6290.5770.5391.000
65:
Read 64items
> names
[1] "shengao""shoubi""shangzhi""xiazhi""tizhong"
[6] "jingwei""xiongwei""xiongkuang"
> r <-matrix(z,nrow=8,dimnames=list(names,names))
> d <-as.dist(1-r)
> hc <-hclust(d)
> plot(hc)
然后可以用rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,border = 2, cluster = NULL)来确定类的个数。 tree就是求出来的对象。k为分类的个数,h为类间距离的阈值。border是画出来的颜色,用来分类的。
?
1
2
3
> plot(hc)
> rect.hclust(hc,k=2)
> rect.hclust(hc,h=0.5)
result=cutree(model,k=3) 该函数可以用来提取每个样本的所属类别
二、动态聚类k-means
层次聚类,在类形成之后就不再改变。而且数据比较大的时候更占内存。
动态聚类,先抽几个点,把周围的点聚集起来。然后算每个类的重心或平均值什么的,以算出来的结果为分类点,不断的重复。直到分类的结果收敛为止。r语言中主要使用kmeans(x, centers, iter.max = 10, nstart = 1, algorithm =c("Hartigan-Wong", "Lloyd","Forgy", "MacQueen"))来进行聚类。centers是初始类的个数或者初始类的中心。iter.max是最大迭代次数。nstart是当centers是数字的时候,随机集合的个数。algorithm是算法,默认是第一个。
?
使用knn包进行Kmean聚类分析
将数据集进行备份,将列newiris$Species置为空,将此数据集作为测试数据集
>newiris <- iris
>newiris$Species <- NULL
在数据集newiris上运行Kmean聚类分析, 将聚类结果保存在kc中。在kmean函数中,将需要生成聚类数设置为3
>(kc <- kmeans(newiris, 3))
K-means clustering with 3 clusters of sizes 38, 50, 62: K-means算法产生了3个聚类,大小分别为38,50,62.
Cluster means: 每个聚类中各个列值生成的最终平均值
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053
Clustering vector: 每行记录所属的聚类(2代表属于第二个聚类,1代表属于第一个聚类,3代表属于第三个聚类)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[73] 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3
[109] 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3
[145] 3 3 2 3 3 2
Within cluster sum of squares by cluster: 每个聚类内部的距离平方和
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %) 组间的距离平方和占了整体距离平方和的的88.4%,也就是说各个聚类间的距离做到了最大
Available components: 运行kmeans函数返回的对象所包含的各个组成部分
[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size"
("cluster"是一个整数向量,用于表示记录所属的聚类
"centers"是一个矩阵,表示每聚类中各个变量的中心点
"totss"表示所生成聚类的总体距离平方和
"withinss"表示各个聚类组内的距离平方和
"tot.withinss"表示聚类组内的距离平方和总量
"betweenss"表示聚类组间的聚类平方和总量
"size"表示每个聚类组中成员的数量)
创建一个连续表,在三个聚类中分别统计各种花出现的次数
>table(iris$Species, kc$cluster)
1 2 3
setosa 0 50 0
versicolor 2 0 48
virginica 36 0 14
根据最后的聚类结果画出散点图,数据为结果集中的列"Sepal.Length"和"Sepal.Width",颜色为用1,2,3表示的缺省颜色
>plot(newiris[c("Sepal.Length", "Sepal.Width")], col = kc$cluster)
在图上标出每个聚类的中心点
〉points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3, pch = 8, cex=2)
三、DBSCAN
动态聚类往往聚出来的类有点圆形或者椭圆形。基于密度扫描的算法能够解决这个问题。思路就是定一个距离半径,定最少有多少个点,然后把可以到达的点都连起来,判定为同类。在r中的实现
dbscan(data, eps, MinPts, scale, method, seeds, showplot, countmode)
其中eps是距离的半径,minpts是最少多少个点。 scale是否标准化(我猜) ,method 有三个值raw,dist,hybird,分别表示,数据是原始数据避免计算距离矩阵,数据就是距离矩阵,数据是原始数据但计算部分距离矩阵。showplot画不画图,0不画,1和2都画。countmode,可以填个向量,用来显示计算进度。用鸢尾花试一试
?
1
2
3
4
5
6
7
8
9
10
11
> install.packages("fpc", dependencies=T)
> library(fpc)
> newiris <-iris[1:4]
> model <-dbscan(newiris,1.5,5,scale=T,showplot=T,method="raw")# 画出来明显不对 把距离调小了一点
> model <-dbscan(newiris,0.5,5,scale=T,showplot=T,method="raw")
> model #还是不太理想……
dbscan Pts=150MinPts=5eps=0.5
012
border 34518
seed 04053
total 344571
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)