转至: https://www.cnblogs.com/ITtangtang/p/7967386.html
每个Spark executor作为一个YARN容器(container)运行。Spark可以使得多个Tasks在同一个容器(container)里面运行
1. Spark支持资源动态共享,运行于Yarn的框架都共享一个集中配置好的资源池
2. 可以很方便的利用Yarn的资源调度特性来做分类、隔离以及优先级控制负载,拥有更灵活的调度策略
3. Yarn可以自由地选择executor数量
4. Yarn是唯一支持Spark安全的集群管理器,使用Yarn,Spark可以运行于Kerberized Hadoop之上,在它们进程之间进行安全认证
我们知道Spark on yarn有两种模式:yarn-cluster和yarn-client。这两种模式作业虽然都是在yarn上面运行,但是其中的运行方式很不一样,今天就来谈谈Spark on YARN yarn-client模式作业从提交到运行的过程剖析
Spark运行模式:
在Yarn-client中,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。
因为Driver在客户端,所以可以通过webUI访问Driver的状态,默认是 http://hadoop1:4040 访问,而YARN通过http:// hadoop1:8088访问
因为是与Client端通信,所以Client不能关闭。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。
应用的运行结果不能在客户端显示(可以在history server中查看),所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况,下图是yarn-cluster模式
[图片上传失败...(image-107978-1592274191581)]
执行过程:
比以前的更多的理解:
(1)Application Master所在的NodeManager是Yarn随机分配的,不是在主节点上,下图是实验室集群上跑得一个Spark程序,tseg0是主节点,tseg1~tseg4是workers,IP10.103.240.29指的是tseg3:
(2)在上图还可以看出,executor的容器和AM容器是可以共存的,它们的封装都是容器;
(3)AM是Yarn启动的第一个容器;
(4)AM所在的NodeManager就是平常说的Driver端,因为这个AM启动了SparkContext,之前实验室说的“谁初始化的SparkContext谁就是Driver端”一直理解错了,以为这句话是相对于机器说的,但其实是相对于Cluster和Client的集群模式来说的(不知道其他模式Mesos、standalone是不是也是这样)。
(5)在Application提交到RM上之后,Client就可以关闭了,集群会继续运行提交的程序,在实际使用时,有时候会看到这样一种现象,关闭Client会导致程序终止,其实这个Application还没有提交上去,关闭Client打断了提交的过程,Application当然不会运行。
(1)YarnCluster的Driver是在集群的某一台NM上,但是Yarn-Client就是在RM的机器上;
(2)而Driver会和Executors进行通信,所以Yarn_cluster在提交App之后可以关闭Client,而Yarn-Client不可以;
(3)Yarn-Cluster适合生产环境,Yarn-Client适合交互和调试。
下表是Spark Standalone与Spark On Yarn模式下的比较
(1)SparkContext初始化不同,这也导致了Driver所在位置的不同,YarnCluster的Driver是在集群的某一台NM上,但是Yarn-Client就是在RM在机器上;(2)而Driver会和Executors进行通信,这也导致了Yarn_cluster在提交App之后可以关闭Client,而Yarn-Client不可以;
(3)最后再来说应用场景,Yarn-Cluster适合生产环境,Yarn-Client适合交互和调试。
redis不支持PHP的多维数组的存取。解决办法是:如有要用redis存多维数组,可以把数组json_encode转换成json各式数据,以string类型的方式存储。读取的时候再json_decode回来。这样就可以直接关闭了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)