怎么用python做自动化测试?

怎么用python做自动化测试?,第1张

这里以web自动化测试为例,简单介绍一下如何使用python进行web自动化测试,主要用到selenium这个框架,实验环境win10+python3.6,主要内容如下:

1.首先,安装selenium框架,这个直接在cmd窗口输入命令“pipinstallselenium”就行,如下,安装非常快:

2.安装完成后,还需要安装浏览器驱动程序,不然直接运行程序会报错,以谷歌浏览器chrome为例,需要下载chromedriver驱动程序,如下,这里chromedriver的版本必须要与自己平台浏览器的版本匹配:

下载完成后,是一个zip压缩包,里面就一个chromedriver.exe文件,这里需要将这个文件复制到python安装目录下,如下:

3.最后,我们就可以进行selenium框架测试了,测试代码如下,非常简单,创建一个webdriver,如果能正常打开对应网页,则说明selenium安装成功:

之后就可以直接定位相关元素,进行web自动化测试了,主要方法如下(共有8种),分别是id、name、classname、tagname、linktext、partiallinktext、xpath和cssselector,这里可以自行测试,相关资料非常丰富:

至此,我们就完成了pythonweb自动化测试框架selenium的安装和简单使用。总的来说,整个过程非常简单,只要你有一定的python基础,熟悉一下上面的安装过程,很快就能搭建好本地selenium自动化测试框架,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

1. 使用装饰器来衡量函数执行时间

有一个简单方法,那就是定义一个装饰器来测量函数的执行时间,并输出结果:

import time

from functoolsimport wraps

import random

def fn_timer(function):

  @wraps(function)

  def function_timer(*args, **kwargs):

      t0= time.time()

      result= function(*args, **kwargs)

      t1= time.time()

      print("Total time running %s: %s seconds" %

          (function.__name__, str(t1- t0))

)

      return result

return function_timer

@fn_timer

def random_sort(n):

  return sorted([random.random() for i in range(n)])

if __name__== "__main__":

  random_sort(2000000)

输出:Total time running random_sort: 0.6598007678985596 seconds

使用方式的话,就是在要监控的函数定义上面加上 @fn_timer 就行了

或者

# 可监控程序运行时间

import time

import random

def clock(func):

    def wrapper(*args, **kwargs):

        start_time= time.time()

        result= func(*args, **kwargs)

        end_time= time.time()

        print("共耗时: %s秒" % round(end_time- start_time, 5))

        return result

return wrapper

@clock

def random_sort(n):

  return sorted([random.random() for i in range(n)])

if __name__== "__main__":

  random_sort(2000000)

输出结果:共耗时: 0.65634秒

2. 使用timeit模块

另一种方法是使用timeit模块,用来计算平均时间消耗。

执行下面的脚本可以运行该模块。

这里的timing_functions是Python脚本文件名称。

在输出的末尾,可以看到以下结果:4 loops, best of 5: 2.08 sec per loop

这表示测试了4次,平均每次测试重复5次,最好的测试结果是2.08秒。

如果不指定测试或重复次数,默认值为10次测试,每次重复5次。

3. 使用Unix系统中的time命令

然而,装饰器和timeit都是基于Python的。在外部环境测试Python时,unix time实用工具就非常有用。

运行time实用工具:

输出结果为:

Total time running random_sort: 1.3931210041 seconds

real 1.49

user 1.40

sys 0.08

第一行来自预定义的装饰器,其他三行为:

    real表示的是执行脚本的总时间

    user表示的是执行脚本消耗的CPU时间。

    sys表示的是执行内核函数消耗的时间。

注意:根据维基百科的定义,内核是一个计算机程序,用来管理软件的输入输出,并将其翻译成CPU和其他计算机中的电子设备能够执行的数据处理指令。

因此,Real执行时间和User+Sys执行时间的差就是消耗在输入/输出和系统执行其他任务时消耗的时间。

4. 使用cProfile模块

5. 使用line_profiler模块

6. 使用memory_profiler模块

7. 使用guppy包


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8131129.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-13
下一篇 2023-04-13

发表评论

登录后才能评论

评论列表(0条)

保存