*程序名称:带汉字库的12864液晶显示模块驱动
*程序功能:显示字符 、汉字和图片
*开发工具:Kile
* MCU型号:AT89S52-24PU
*时钟频率:11.0592MHZ
*程序作者:yuan
*版权说明:yuan
*****************************************************************/
#include<reg52.h>
#include "lcd.h"
#include "util.h"
sbit E=P1^5//脉冲使能
sbit RW=P1^6//读写选择
sbit RS=P1^7//数据命令选择
sbit rst=P3^6//12864复位
// 延时ms函数:
// 12864检查状态函数:
void Check12864State(void)
{
P0=0xff
E=0//读状态前三控制线的状态
RS=0
RW=1
E=1//拉高,读状态
while((P0&0x80)==0x80)//等待空闲
E=0//写命令后三控制线的状态
RS=1
RW=0
}
// 12864写命令函数:
void Write12864Command( unsigned char com)
{
Check12864State()//检查状态
P0=com//赋值
E=0//写命令前三控制线的状态
RS=0
RW=0
E=1//拉高,写命令
E=0//写命令后三控制线的状态
RS=1
RW=1
}
//12864写数据函数:
void Write12864Data( unsigned char dat)
{
Check12864State()//检查状态
P0=dat//赋值
E=0//写数据前三控制线的状态
RS=1
RW=0
E=1//拉高,写数据
E=0//写数据后三控制线的状态
RS=0
RW=1
}
//在指定的位置显示字符串(汉字和ASCII码字符)函数:
void LCD12864DisplayString( unsigned char y,unsigned char x, unsigned char *pstr)
//y-行数值0-3,x-列数值0-7,pstr-字符串指针
//12864可以显示32个汉字(四行每行8个),一个地址对应一个汉字
//可以显示64个ASCII码字符(四行每行16个),一个地址对应两个字符
//为了实现自动换行功能,这个函数比较繁琐
{
unsigned char row,n=0
Write12864Command(0x30)//基本指令
Write12864Command(0x06)//地址计数器自动加以,光标右移
switch(y)//根据行号选择行地址
{
case 0:row=0x80break//第一行首地址
case 1:row=0x90break//第二行首地址
case 2:row=0x88break//第三行首地址
case 3:row=0x98break//第四行首地址
default:
}
Write12864Command(row+x)//写地址
while(*pstr!='\0')
{
Write12864Data(*pstr)//写字符
pstr++
n++//计数
if((n+x*2)==16)//如果一行写完 ,继续写第二行
{
if(y==0) Write12864Command(0x90)//写下一行地址
else if(y==1) Write12864Command(0x88)//写下一行地址
else if(y==2) Write12864Command(0x98)//写下一行地址
else
}
else if((n+x*2)==32)//如果第二行写完 ,继续写第三行
{
if(y==0) Write12864Command(0x88)//写下一行地址
else if(y==1) Write12864Command(0x98)//写下一行地址
else
}
else if((n+x*2)==48)//如果第三行写完 ,继续写第四行
{
if(y==0) Write12864Command(0x98)//写下一行地址
else
}
else
}
}
//图片模式清屏函数:
void Clear12864Screen()
{
unsigned char i,j
Write12864Command(0x34)//功能设定:8位控制方式,使用扩充指令
Write12864Command(0x36)//使用扩充指令,绘图显示控制
for(i=0i<32i++)
//ST7920可控制256*32点阵(32行256列),而12864液晶实际的行地址只有0-31行,
//12864液晶的32-63行的行是0-31行地址从第128列划分一半出来的,所以分为上下两半屏,
//也就是说第0行和第32行同属一行,行地址相同第1行和第33行同属一行,以此类推
{
Write12864Command(0x80|i)//写行地址(垂直地址)
Write12864Command(0x80)//写列地址(水平地址)
for(j=0j<32j++)
Write12864Data(0x00)//清屏
}
}
//在任意位置显示任意大小的图片函数:
void LCD12864DisplayPictrue(unsigned char y,unsigned char x,
unsigned char px,unsigned char py, unsigned char *pp)
//y-起始行(数值0-63),x-起始列(16位宽,数值0-7),
//px-图片宽度,py-图片高度,pp-指针指向图片数组
//因为上下屏的地址不连续,要在任意位置显示完整的图像,处理起来比较繁琐
{
unsigned char i,j,k
Clear12864Screen()//清屏
if(y<32)//如果起始行在上半屏
{
k=32-y//算出上半屏的行数
for(i=0i<ki++,y++)//上半屏行数
{
Write12864Command(0x80|y)//写行地址(垂直地址)
Write12864Command(0x80|x)//写列地址(水平地址)
for(j=0j<px/8j++)
Write12864Data(pp[i*px/8+j])//写图片数据
}
y=0//下半屏起始行,接上半屏继续写数据
for(i<pyi++,y++)//下半屏剩下的行数
{
Write12864Command(0x80|y)//写行地址(垂直地址)
Write12864Command(0x80|(8+x))//写列地址(水平地址)
for(j=0j<px/8j++)
Write12864Data(pp[i*px/8+j])//写图片数据
}
}
else //如果起始行在下半屏
{
for(i=0i<pyi++,y++)//行数
{
Write12864Command(0x80|(y-32))//写行地址(垂直地址)
Write12864Command(0x80|(8+x))//写列地址(水平地址)
for(j=0j<px/8j++)
Write12864Data(pp[i*px/8+j])//写图片数据
}
}
}
void Clear12864Text()
{
Write12864Command(0x34)//清屏
DelayMs(5)
Write12864Command(0x30)//清屏
DelayMs(5)
Write12864Command(0x01)//清屏
DelayMs(5)
}
//12864初始化函数:
void Initialize12864()
{
rst=0//复位12864
DelayMs(30)
rst=1
DelayMs(20)
Write12864Command(0x30)//功能设定:8位控制方式,使用基本指令
Write12864Command(0x08)//显示关
Write12864Command(0x01)//清屏
Write12864Command(0x06)//地址计数器加一、光标右移
Write12864Command(0x0c)//显示开
}
带字库的驱动
您好,1. 首先是接口的预定义----------------------------------------------
#define LCD_DATA (*((volatile Uint16 *)0x0070E0)) // GPIOA7-A0对应DB7-DB0
#define RS GpioDataRegs.GPBDAT.bit.GPIOB0
#define RW GpioDataRegs.GPBDAT.bit.GPIOB1 //别弄错0 1 2
#define EN GpioDataRegs.GPBDAT.bit.GPIOB2 // 实际接线要对应
void InitGpio(void)
{
EALLOW
GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 0// 设置为普通GPIO使用
GpioMuxRegs.GPADIR.bit.GPIOA0 = 1 // 设置为输出
GpioMuxRegs.GPAMUX.bit.PWM2_GPIOA1 = 0
GpioMuxRegs.GPADIR.bit.GPIOA1 = 1
GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 0
GpioMuxRegs.GPADIR.bit.GPIOA2 = 1
GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 0
GpioMuxRegs.GPADIR.bit.GPIOA3 = 1
GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 0
GpioMuxRegs.GPADIR.bit.GPIOA4 = 1
GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 0
GpioMuxRegs.GPADIR.bit.GPIOA5 = 1
GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 0
GpioMuxRegs.GPADIR.bit.GPIOA6 = 1
GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 0
GpioMuxRegs.GPADIR.bit.GPIOA7 = 1
GpioMuxRegs.GPBMUX.bit.PWM7_GPIOB0 = 0
GpioMuxRegs.GPBDIR.bit.GPIOB0 = 1
GpioMuxRegs.GPBMUX.bit.PWM8_GPIOB1 = 0
GpioMuxRegs.GPBDIR.bit.GPIOB1 = 1
GpioMuxRegs.GPBMUX.bit.PWM9_GPIOB2 = 0
GpioMuxRegs.GPBDIR.bit.GPIOB2 = 1
EDIS
}
----------------------------------------------
一般液晶的控制线是直接对I/O口的位进行 *** 作,数据线是按字进行 *** 作。在这容易出错的是:(1)数据线地址的对应。DSP的GPIO数据地址一般为16位一个地址(F28335有的是32个GPIO一组,给出了一个地址,实际上是有两个地址的,给出的那一个地址是低16位的)。需要注意的是,液晶数据线一般为8位,那么把八位数据送出的时候,实际给的是DSP的16位数据的低八位,所以接线上要接低八位的GPIO;如果接高八位的GPIO,软件上要用下面一行程序进行移位【 dat = dat <<8//左移8位,向高位移动】。(2)在进行GPIO初始化和预定义的时候,一般都会复制,但是别忘记改一些0 1 2 3等数,接线上也要一一对应,仔细检查。
2. 51程序移植到DSP的时序问题
----------------------------------------------
void Display_Data_All(uchar *hz)
{
while(*hz != '\0')
{
WriteData12864(*hz)
hz++
delay(20)//2就不够!!!!!!
}
}
----------------------------------------------
由于51单片机的晶振一般为11.0592MHz,而DSP等控制器的晶振为30MHz,实际执行起来最高有150MHz,而液晶为低速外设,所以移植后可能会不显示,显示乱码等情况。我在调试12864液晶的时候就出现过只显示乱码数字不显示汉字的情况,这不是字库损坏,而是因为写汉字的时间要比写数字的时间长,而程序中延时过短。上面程序中把delay(2)改为delay(20)就解决问题了。
实际上,真正造成影响的是,程序执行过快。它认为显示完一个字之后,又很快进入下一个字的 *** 作;实际上液晶要一定的时间才能写完(见液晶 *** 作时序图),所以写数据的程序中要加长延时。至于RS、RW、EN等控制引脚,延时与否影响不大。
3. 240128液晶的调试
240128液晶有busy和int返回信号,实际上不需要接即可。程序中也可以不测忙。。程序中写控制指令两者中间也要加长延时,更不用说写数据之间的延时。
----------------------------------------------
void lcd_regwrite(Uint16 regname,Uint16 regdata) // 写控制指令
{
lcd_regwr(regname)
delay(10)// 加长延时
lcd_regwr(regdata)
}
void lcd_character(uchar *cha,int count) // 显示中文或字符
{
int i
for(i=0i<counti++)
{
delay(10)// 加长延时
lcd_datawrite(*cha)
++cha
}
}
我遇到了这个问题刚解决,在绘图前将12864清屏void LCD_clean()
{ uchar i=0,j=0
write_LCD_command(0x34)
write_LCD_command(0x36)
for(i=0i<32i++)
for(j=0j<32j++)
{
write_LCD_command(0x80+i)
write_LCD_command(0x80+j)
write_LCD_data(0x00)
write_LCD_data(0x00)
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)