首先,针对光谱吸收特征受噪声影响较大的问题,对数据进行最小噪声分量正变换,消除噪声后,再将最小噪声分量特征空间的数据变换回原数据空间,即最小噪声分量反变换;然后针对单个吸收不稳定、光照等对光谱幅值影响较大等问题,提出在连续去除的基础上,利用所有吸收特征并将光谱吸收特征按吸收深度由强至弱重排,从而实现稳定、可靠的光谱特颤埋卜征提取。
(1)最小噪声分量变换
在实际应用中,地物光谱吸收特征对噪声敏感,因此,在进行特征提取之前,研究中引入了最小噪声分量变换(Minimum Noise Fraction,MNF),去除噪声对特征提取影响的同时去除数据相关性。
MNF变换是Green等人在主成分分析理论的基础上改进得到的。通常被用来去除数据中的噪声成分,同时确定高光谱数据的本征维数,从而减少后续处理的运算量。
该方法以噪声协方差的估计矩阵为基础,调整噪声的取值并去除其波段间的相关性。在结果数据中噪声的方差为1,并且在波段间无相关性。假设高光谱数据X=[x1,x2,…,xm]T可以表示为
X = Z + N (6.1)
式中:矩阵Z,N分别是理想信号和噪声矩阵,且彼此不相关;第i 波段的噪声分量定义为NFi = ,信噪比定义为SNRi= 。
∑X,∑Z和∑N分别为可观测信号、理想信号及噪声的协方差矩阵,并且有
∑X =∑XZ +∑N (6.2)
假设F为∑N的白化矩阵,∑N的特征值矩阵为 =diag(λN1,λN2,…,λNp),其中p为波段数,则有
高光谱遥感技术原理及矿产与能源勘查应用
高光谱遥感技术原理及矿产与能源勘查应用
式中:I为单位矩阵,矩阵 由∑N的特征向量组成,且满足 。
假设∑w=F T∑X F为噪声白化之后的观测数据的协方差矩阵,∑w矩阵特征值组成的对角矩阵为 =d i a g(λw1 ,λw2 ,…,λwp),对矩阵∑w作主成分变换,可以得到由矩阵∑w特征向量组成的 ,使得
高光谱遥感技术原理及矿产与能源勘查应用
于是得到最小噪声分量变换矩阵:
高光谱遥感技术原理及矿产与能源勘查应用
由式(6.6)得观测信号最小噪声分量变换后的矩阵为
T = MTX (6.7)
经过式(6.7)变换之后,可观测信号各个波段间彼此不相关,且各个波段按信噪比由大到小排列 。即按变换后数据T的特征值排列,较大的特征值对应信号为主的图像,接近于1的特征值代表噪声占主导的图像。在变换之后,通常可以直接利用T进行数据后续处理,但是Cheriyadat和Bruce等人证明,主成分变换完全依赖于数据整体的协方差,当类内方差占据类间方差的主体时,主成分变换倾向于将数据向不利于分类的方向投影。可见,MNF变换与主成分变换具有相同的特点,因此,研究中提出的算法在利用MNF之后,利用最小噪声分量反变换将数据转换回光谱空间,这样可以最大限度地保证数据的可分性。
(2)光谱重排
不同地物的光谱信息是不相同的,因此,高光谱遥感提供的地物精细的光谱信息可以直接作为特征提取与目标识别的依据,比如利用红边、绿峰、NDVI等特征可以提取植被。但当不同地物之间的光谱在形状、幅值、变化趋势等指标大致相同的时候(即光谱特征相似),提取区分不同地物显著特征是非常困难的,即地物之间的不相关液芦性均匀地分布在各个波段;此外,由于单个光谱吸收特征容易受到光照条件、大气等影响使得提取的光谱特征参量不稳定。因此,针对以上问题,研究中提出了基于光谱重排的特征提取方法,根据光谱吸收深度的由强到弱排列茄穗,剩余的没有吸收特征波段则按波长由小到大排列。
光谱重排的实现过程如下:
1)通过不同阶数的微分值确定的光谱弯曲点、最大最小光谱反射率及其波长位置,计算连续统去除后目标光谱的吸收位置λM 及其反射率值ρM、吸收深度H、吸收左右肩(ρL,ρR)及其反射值(λL,λR),并且吸收深度H的计算公式如下:
H = d × ρL +(1-d)× ρR-ρM (6.8)
d =(λL-λM)/(λR-λL) (6.9)
2)将目标光谱按照吸收深度H由强至弱进行排列,若无吸收特征,则按波长由小到大进行排列;
3)以目标光谱为基谱,将图像数据光谱按照目标光谱重排后的波长进行排序。
该方法有效地利用了高光谱遥感数据提供的地物所有吸收特征,增加了特征提取的稳定性和可靠性;并且通过大量的实验发现,任何两种不同地物的光谱通过光谱重排之后,区分不同地物的显著特征更加明显,增加了类别间的可分性。
(3)算法实现
基于光谱重排的抗噪声光谱特征提取方法的实现流程如图6.1所示。该方法中为了消除噪声对光谱吸收特征参数提取的影响,引入了MNF变换;为了有效抑制由于光照条件、传感器等因素产生的光谱幅值变化对光谱特征提取的影响,引入了连续统去除 *** 作;为了克服单一特征不稳定、不同地物光谱特征相似等问题,提出了光谱重排的方法。
(4)实验分析
为了验证上述研究中方法的有效性和可行性,采用AVIRIS航空高光谱数据进行实验分析,并利用光谱之间的光谱角进行可分性的定量化分析。
实验数据为1995年7月在美国内华达州Cuprite矿区AVIRIS航空高光谱数据,并且使用ATREM方法校正得到了地表反射率,波段范围为1990~2480nm,空间分辨率20m,光谱分辨率10nm,数据大小为255 × 350 × 50。
图6.1 光谱特征提取方法实现流程
该研究区域的矿物分布图如图6.2(a)所示,从数据中提取高岭石光谱曲线如图6.2(b)所示,光谱重排后的光谱如图6.2(c)所示。高岭石、明矾石、布丁石及热液硅石特征提取前的光谱比较如图6.3(a)所示,以高岭石光谱为基谱,光谱重排后四种矿物的光谱特征如图6.3(b)(图中的光谱曲线纵坐标做了平移处理)所示。利用光谱角的方法进行四种矿物光谱重排前后可分性的比较,结果如表6.1和表6.2所示。
图6.2 高岭石矿物光谱比较
图6.3 四种矿物光谱比较
表6.1 原始光谱数据四种矿物的可分性
表6.2 重排后光谱数据四种矿物的可分性
由图6.2和图6.3可以看出,经光谱重排后,高岭石矿物光谱吸收特征按吸收深度的强弱进行了重新排列,较好的显现了高光谱所有吸收特征及主次吸收特征的变化;并且明矾石与高岭石矿物在2200 nm的光谱特征由于吸收宽度等不同而能将二者较好的区分。由图6.3与表6.2可以看出,经过光谱重排后,高岭石与其他三种矿物的可分性均存在不同程度的增大,特别是,高岭石与明矾石的可分性从0.1978增加为0.225;为后续矿物识别与分类等处理奠定了良好的基础。
图6.4 SAM方法矿物识别结果
为了进一步验证该方法的性能,进行了利用该方法以及基于SAM方法的矿物识别结果比对分析。利用原始光谱进行光谱角匹配识别的结果如图6.4所示。利用基于光谱重排的抗噪声特征提取方法得到的数据进行矿物识别,结果如图6.5 所示。可以看出,两种方法均能实现四种主要蚀变矿物的识别,但是,采用原始光谱进行识别的结果中存在着一定程度的矿物混淆,并且布丁石的识别结果混淆尤其明显;而在研究方法中进行特征提取基础上得到的矿物识别结果矿物混淆明显降低,取得了较好的识别结果,证明了上述研究中提出的方法的优越性能。
图6.5 基于光谱重排特征提取方法矿物识别结果
6.1.2 吸收波长加权匹配方法
光谱曲线往往包含了许多由噪声引入的无效特征,利用同类地物光谱特征求交,实现了有效吸收波长、吸收深度的提取;常用的SAFP匹配方法中,只有参考光谱和测试光谱的特征在相同的波长位置时,两条光谱才被判为相同,匹配准则比较苛刻,导致由于噪声等因素影响光谱特征而无法匹配,吸收波长加权匹配法利用偏移加权矩阵实现了吸收波长的容偏匹配,大大增加了匹配的准确性,降低了外界因素对吸收参量特征的影响。
对同类地物光谱曲线特征求交,得出识别地物的有效特征;地物光谱的诊断吸收特征总是出现在特定的波段上,在某些情况下会有局部的偏移;对吸收特征的中心波长进行匹配,并容许一定程度的波段偏移,容许程度用偏移加权矩阵来度量,能够对地物光谱实现精确的识别。考虑到实际应用噪声及系统误差引入的干扰,用吸收深度对单个中心波长进行加权,吸收深度小的吸收特征对整体相似度的贡献小,吸收深度大的吸收特征对整体相似度的贡献大,这样一定程度上抑制了无法去除的非有效特征的影响。
(1)吸收波长加权匹配的实现
有效吸收特征的精确提取和容偏匹配实现流程如图6.6所示,具体包含以下几个步骤:
1)对参考光谱连续统去除。利用导数法确定各吸收特征的中心位置和左右肩对应的波长后,利用下列公式提取吸收特征中心波长和吸收深度:
高光谱遥感技术原理及矿产与能源勘查应用
式中: 和 分别为吸收左肩端、右肩端、吸收谷点的反射率和波长位置;d= 为吸收的对称性参数。
没有标准参考光谱时,参考光谱通过训练样本得到。通过上述方法提取各条参考光谱的吸收中心波长和吸收深度后,对所有训练样本的吸收特征参数求交,方法如下:
光谱A和B的所有吸收特征为feature_a,feature_b,A的第i个波段上存在特征,对feature_b计算:
judge = Weight·feature_b([i-BandOffset:i + BandOffset]) (6.11)
如果,judge>0 ,则光谱A的第i个波段上的特征为有效特征。
得到参考光谱共有的有效特征,此处需要记录的是有效特征的位置和吸收深度的大小,保存在向量EffFeatureIndex和Depth中。
2)提取未知光谱所有吸收位置和对应的吸收深度特征,记录在FeaturePos和FeatureDepth;
图6.6 中心波长加权匹配流程图
未知光谱特征与参考光谱有效特征按位匹配,匹配方法包含两个参数,容许波段偏移数BandOffset和偏移加权矩阵Weight。
3)找到参考光谱第i个特征位置,生成特征检验区间:
TestIndex =(i-BandOffset):(i + BandOffset) (6.12)
计算特征检验值:
TestValue = Weight·FeatureDepth(TestIndex) (6.13)
TestValue不为0 ,则说明未知光谱对应位置存在有效特征,反之则不存在,未知光谱中的识别特征所在波段记录在向量EffIndex中。
4)重复3)的过程,直到对未知光谱的所有有效特征进行了检测,未知光谱中识别特征存在的波段记录在向量EffIndex中。
5)对吸收位置用吸收深度加权匹配,匹配度的计算公式如下:
高光谱遥感技术原理及矿产与能源勘查应用
6)根据匹配度degree的值判断未知光谱与参考光谱的近似程度,阈值Thresh手动选择,根据经验,在用吸收深度加权的匹配方法中,Thresh=0.8就能获得较高的识别率。
用吸收深度加权对吸收特征中心波长进行容偏匹配的关键在于:有效吸收特征的准确提取和偏移加权矩阵Weight或容许波段偏移数目BandOffset的选择,反射率曲线所有吸收特征的精确提取是前提,偏移加权矩阵的确定需要根据对像光谱的采样间隔来确定,Weight的分量的个数为2 × BandOffset+1;并且有效特征提取和特征识别过程使用的偏移加权矩阵Weight可以不同,光谱采样间隔较大时,可以选择Weight的各个分量服从高斯分布。
(2)基于USGS光谱库数据的实验与结果分析
图6.7(a)为USGS矿物光谱库中六条绿泥石连续统去除后反射率曲线;波段偏移参数BandOffset=1,对应的容偏矩阵Weight=[1,1,1];即两条光谱的特征相差一个波段以下认为该特征为有效特征;绿泥石的有效特征见图6.7(b),用方框标记出了吸收谷的波长位置;图6.7(c)给出了利用吸收波长加权匹配方法得到的绿泥石有效特征;图6.7(d)给出了绿泥石和阳起石反射率光谱。
图6.7 有效特征提取
匹配加权矩阵Weight=[1,1,1]表示容许两端偏移,Weight=[0.1,1,0.1]表示不容许偏移;两情况对应的相似度见表6.3和表6.4。对比表6.3和表6.4的相似度值可以看出,容许波段偏移后,绿泥石光谱间的相似度明显变大。利用图6.7(c)的有效特征对图6.7(d)所示的阳起石和绿泥石光谱进行Weight=[1,1,1]匹配,近似度见表6.5,用绿泥石的有效光谱能有效的识别出绿泥石光谱与阳起石光谱的差异。
表6.3 绿泥石光谱识别Weight=[1,1,1]
表6.4 绿泥石光谱识别Weight=[0.1,1,0.1]
表6.5 阳起石和绿泥石识别Weight=[1,1,1]
(3)基于AVIRIS数据的实验与结果分析
利用内华达州Cuprite矿区的AVIRIS数据进行基于吸收波长加权提取方法实现矿物匹配识别研究。利用的矿物端元光谱如图6.8所示,识别结果如图6.9所示。
从地质图6.2(a)与结果图6.9比较可以看出,该方法对具有明显光谱吸收特征的明矾石和高岭石矿物具有较高精度的识别效果,但是对于吸收特征较宽、较浅的白云母和布丁石的识别效果则较差。
图6.8 算法中用到的端元光谱
图6.9 基于吸收波长加权特征提取的矿物匹配识别结果
特征是对象所表现出来的各种属性与特点。在遥感图像分析中特征提取可以从两个意义上来实施:一种是按照一定的准则直接从原始空间中选出一个子集(即子空间),实践中的波段选择即属于此类;另一类是在原始特征空间和新特征空间之间找到某种映射关系P,P:x→y,将原始特征空间x={x1,x2…,xn} 映射到维数降低了的特征空间y中去,y={y1,y2…,ym},m<n。对于用于分类目的的特征提取,好的特征提取方法能使同类物质样本的分布具有密集性,而不同类物质的样本在特征空间中能够隔离分布,为进一步分类打下良好基础。因为高光谱数据具有波段多、波段间相关性高及数据冗余度高等特点,所以对高光谱遥感数据的特征提取具有特殊意义。遥感图像特征提取包含的内容非常广泛,提取方法也很多,光谱维特征提取和空间维特征提取是表现图像特征提取的两种主要方法。这里主要介绍适用高光谱数据的一些光谱维特征提取方法,主要涉及主成分分析法,典范变量分析法及改进的CA方法。
主成分分析是一种把原来多个指标化为少数几个相互独立的综合指标的一种分析技术。对波段间高度相关的数据非常有效(Cloutis,1996)。PCA技术已被用在不同的地质遥感项目,包括宽波段和高光谱数据(Lee等,1990;Resmini等,1997,Fujimura & Kiyasu,1994)。由于高光谱数据波段间的相关性、高冗余度,直接利用所有的原始波段作分类或特征弊举提取显得很不经济。因此先对原始数据作PCA变换,然后对少数几个综合指标(成分)分析将会收到事半功倍的效果。在高光谱数据分析中,PCA技术可将总体大部分方差集中在前面少数几个主成分中。于是,人们利用这少数几个主成分做一些地质分析,如利用前3个主成分的假彩色合成图判读地质矿物信息,进而成图。但在主成分合成图上的彩色在不同的图像上是变化的,并不代表一定的地质矿物成分,除非有相似的地质露头和覆盖,更困难的是,我们不能根据岩石、土壤和矿物等反射光谱作指示来判读主成分合成图上的彩色。另外,确定每个主成分的物理意义也相当困难。再者,矿物的显著变异可能仅引起光谱的细微差异,这种细微差异常被淹没在高方差的主成分中而被忽略。因此PCA可能较适宜用来粗略地识别光谱差异显著的矿物和岩性类别,而不是定量的矿物识别和制图(Coutis,1996)。
Jia&Richards(1999)发展的分块主成分分析法用于特征提取,取得了一定的分类和显示效果。类似3.3,4中建立的SMLDF判别函数的思想,他们将全部波段的相关阵按照相邻波段的相关性分成若干块。一般高度相唤兆关的块沿对角线分布,而相关性低的块远离对角线。块矩阵本身集合了相邻波段间相关性高的波段。因此沿相关矩阵对角线可分成若干块(波段组),并对每组进行主成分变换,最后将每组的重要特征(主成分)再重新组合在一起作为进一步主成分分析与特征选择之用。
典范分析也是将较多的变量化为少数几个典范变量,通过这较少的典范变量之间的相关性来综合地描述两个多元随机变量之间关系的一种数学方法(唐守正,1986)。假如我们有两个多元随机变量(设x为p维租链碧随机变量,y是q维随机变量),如何描述这两个多元随机变量之间关系的紧密程度呢?直接的方法就是逐一计算两个多元随机变量各分量之间的相关系数或其他相似系数,可计算出p×q个相关系数。但这样做既繁琐,也不能本质地说明这两个随机变量总体相关水平。类似主成分分析,从每个多元随机变量中造就数个“综合变量”——典范变量。在求算两随机变量各自典范变量过程中得到的特征根即为对应典范变量对的典范相关系数。如果将非零特征根按从大到小排列,则最大的特征根即为第一对典范变量(分别对应x和y)的相关系数,如果典范相关系数越大,则说明这一对典范变量关系越紧密。一般在实践中只取前面k(k<p,q)个典范相关系数和典范变量进行分析,舍去后面的典范变量已无关紧要,这达到了特征提取的目的。在利用高光谱数据进行岩性识别分类时,首先可以将高光谱图像数据分成若干未知岩性的类别,然后在每个类别中抽取一定的样本(象元)数,同时抽取已知岩性一定的样本数,组成两个类似前述的多元随机变量(一个为已知岩性,另一个为未知岩性)的样本并计算它们前面数对典范变量。如前面数对典范变量(通常为3对)关系紧密(反映在它们相应的特征根上),这个未知岩性的类别就很有可能与已知岩性为同类岩性,反之就可能不是。实践中前面数对典范变量关系紧密程度靠经验裁定。以此类推,可以将研究区内所有未知岩性的类别与已知岩性的类别求算两两典范变量对,并根据它们各自的相关紧密程度和判据决定未知岩性类别的归属。
PCA主要想最大限度地将不同类别分开,而典范分析则是在低维变量间寻找能代表高维变量的相关性,以达到分类、识别目标物的目的。典范分析在高光谱地质应用中潜在的功用与PCA技术大部分是一致的。
刘建贵(1999)在分析K-L变换性质的基础上,根据高光谱数据用于城市目标物识别提取的特点,提出了面向分类的特征提取的CA改进方法。选择适当的变换矩阵,同时考虑类内与类间距离的CA方法,设法使原特征空间的各类的样本点在光谱维上的投影能使类间距离与类内距离的比值达到最大。这种比值称为广义瑞利商。根据这一原则来决定变换矩阵的选择。刘建贵(1999)用这种改进的方法实施对北京市沙河镇城市地物特征的提取。具体处理过程:①对原始高光谱图像进行预处理,得到相对反射率图像;②选择最终成分光谱,即需要分类的类别数,最终成分光谱根据图像及地面调查的情况进行,共找出11个类别;③对每一类统计出均值向量和协方差阵;④求出每两个类别对之间的类间和类内距离,利用CA变换方法求出变换特征;⑤求出该两个类别对应于每个原始波段的巴氏距、加载系数(刘建贵,1999)以及变换域每个特征的巴氏距、每个特征度量维上的类间类内距离比,加载系数可通过CA变换成分与波段间的相关性求算;⑥找出最优特征。实验结果表明这种特征提取方法非常有效。采用这种方法,提取的特征能够增加样本的类内凝聚度和扩大类间距离,同时消除波段问的相关性,因而能改善分类性能。
地物光谱特征研究是现代遥感技术的重要组成部分。它既是传感器波段选择和设计的依据,又是遥感数据分析解译的基础。遥感探测是成像空间地理实体的电磁波谱和辐射能特征。具有明确的物理意义,而基于光谱特征的信息提取与分类,是通过遥感光谱数据的变化规律来识别和研究地物类型。因此,研究不同地理实体的光谱表达模型,是有效地提取专题信息的关键。
1.金属硫化物矿床近矿围岩岩石光谱特征研究
图3.3.1是东秦岭地区比较有代表性的几种近矿蚀变岩及含矿体的反射波谱曲线。从波谱曲线形态可以看出,金属硫化物蚀变带在蓝绿波段(0.4~0.6μm)和近红外(0.85~1.1μm,2.2~2.4 μm)波段呈强吸收特征;在红光(0.6~0.85μm)波段和近红(1.28~1.46μm)波段出现强反射峰。硅化蚀变岩及含羟基的蚀变岩类反射波谱曲线形态比较接近,其吸收带仍然位于0.4~0.55μm、0.85~1.1μm、1.9~2.3μm波段内,而在0.6~0.85 μm、1.48~1.88 μm波段内出现反射肩。
图3.3.1 东秦岭地区近矿蚀变岩与矿化体反射波谱曲线
①高岭土化蚀变岩;②硅化蚀变岩;③金属硫化物蚀变岩
图3.3.2是东秦岭地区近矿蚀变带与近矿围岩的反射波谱对比曲线,成矿围岩与金属硫化物带波谱曲线相比,波谱响应趋向平缓,不出现大幅度跳跃的波峰或波谷。从波谱曲线形态可以看出,随金属硫化物带(矿体)的远离(矿化蚀变的减弱),波谱曲线走向平侍卜闭缓的趋势更加明显。其中安山岩类和大理岩类波谱形态相似,除在可见光蓝绿光段(0.4~0.6μm)出现一个较强吸收带外,红光到近红外光段基本是光滑的弧弊洞顶向上的曲线,虽然在1.4 μm、1.9μm处有弱吸收显示,但不出现明显的吸收谷和反射肩;片麻岩和花岗岩类为一条平滑的直线,基本无异常显示。从不同蚀变类型与不同近矿围岩的波谱对比中还可以看到,波谱曲线在0.4~1.4μm和1.9~2.5μm两个波段区间集约,仅在1.4~1.9 fμm波段区间呈离散状态,显示出较大的反射差。
图3.3.2 东秦岭地区近矿蚀变岩及近矿围岩反射波谱曲线
①千枚岩;②片麻岩;③大理岩;④安山岩;⑤硅化蚀变岩
上述反射波谱曲线特征表明,蚀变岩与非蚀变岩类的反射波谱有较明显的差异,其中以1.4~1.9 μm波段离散程度最好,即Landsat-TM5波段应为提取矿化蚀变信息的最基本波段。1.9~2.4μm区段亦有一定的离散倾向,故Landsat-TM7可选作辅助波段;0.4~0.6μm波段相对1.4~2.5μm波段为强吸收带,Landsat-TM1、2可作为理想的匹配波段。
图3.3.3是阔叶林(接骨木)在不同状态下的反射波曲线。从曲线形态可以看出,随着植物病害程度的加重在0.6~0.7μm、1.4~1.6μm和1.9~2.4μm波段的吸收逐渐跃起,相反从0.7~1.4 μm段的反射峰跌落。从曲线的离散、集合特征来看,0.6~1.8μm、2.0~2.5μm波段离散程度最好。因此,老裂处于其间的Landsat-TM4、7波段可作为基本应用波段,0.4~0.5μm波段相对为强吸收带,处于其中的Landst-TM1可作为基本匹配波段。
根据代数运算的原理,当波段间反射率差值相近而曲线斜率不同时,反射波段与吸收波段的比值处理,可在一定程度上扩展地物波谱的差异性,显示出动态范围。表3.3.1是根据地物反射波谱数据计算的不同组合比值数值表,从表中可以看出,作为提取蚀变岩带信息的基本应用波段、辅助波段和匹配波段Landsat-TM 5、7、1可以最大限度的显示出以铁帽、硅化、高岭土化、绢云母化为特征的蚀变岩与围岩背景的波谱差。如需要进一步区
图3.3.3 河南上宫金矿区植被(接骨木)不同状态下的反射波谱曲线
1—正常;2—弱毒化期;3—强毒化期
分蚀变带的类型,则以7/1、7/2、5/1、5/2的比值合成处理可在一定程度上突出以Fe3+为主体的蚀变岩信息。据实验研究,混合比值处理[(TM3×TM4)-K]/TM7则极大地压缩非蚀变背景信息,比值合成TM5/1(R)+TM7/1(B)+[(TM3×TM4)-K]/TM7(G)可突出蚀变信息,特别是以羟基(OH)矿物为代表的蚀变岩信息。在比值合成图像上,金属硫化物带应为暗红色,高岭土、绢云母化带应为亮黄色,非蚀变背景接近青色(见彩图)。
表3.3.1 河南豫西地区遥感成矿特征波段比值一览表
表3.3.1是根据植被在不同状态下的反射波谱数据计算出的不同组合比值数值。从组合比值数值中可以看出,作为提取植被受重金属离子毒害信息在Landsat-TM4、7波段得到了比较好的波谱差。如果突出受害严重的区域,需要有混合波段比值处理,如COSTM4×TM7-K等。经实验研究,比值合成[COSTM4×TM3-K](R)+TM4/TM1(B)+TM7/TM1(G)图像反映重害区为橘黄区,轻害区为接近白色,正常区接近青色;也可以用TM4(R)+TM7(B)+[COSTM4×TM7-K](G)图像,正常区为红色,轻害区接近粉红色,重害区接近白色。
2.反射波谱特征模式的应用原则
由于岩石反射波谱测试大多是在室内条件下进行的,而遥感传感器所记录的岩石反射率则为自然条件下的反映。岩石的反射波谱特征在自然环境中受植被、土壤、水分等因素的干扰,往往会产生较强的畸变。对于近矿蚀变带来说,遥感卫星所提供的矿化蚀变信息,常常与矿化蚀变带的水、土及植被等信息有关。当矿化蚀变带中含有较高的As、Hg、Pb等有毒元素和重金属元素时,植被因此可以出现较大范围的毒化反映;当蚀变带遭受强烈的风化剥蚀时,残留在地表多是硅质和含羟基的粘土质矿物集合体,而这种风化残积物的规模可远远超过蚀变带的分布范围。因此,在蚀变信息的提取过程中必须考虑干扰因素的存在,根据当地矿化蚀变岩的出露特征确定提取的目标物(植被毒化、Fe3+、OH-),根据反射波谱的特征模式采取不同的运算公式,加以补救和筛选。
如秦岭山地植被盖率在70%左右,林木繁盛地区可达90%以上。该区主要植被类型为栎类与油松、华山松、白桦等混交林及灌草丛。据区域地球化学研究,崤山、伏牛山地区有色金属、贵金属金矿床多伴生有以 As为主的有害元素和以Cu、Pb、Zn、Mo为主的重金属元素,这些元素会在金矿蚀变带的分散晕圈半径内产生植被的有限毒害晕。根据这一特征,选择在风化残积物较薄、植被受毒害相对明显的伏牛山北坡为试验区,以植被生长状态反应比较敏感的Landsat-TM3、4、5、7波段为基础进行混合比值处理,工作程序见图3.3.4。
图3.3.4 河南省伏牛山地区植被毒化晕的提取工作程序图
TM5/TM4、TM4/TM3比值是最佳的植被指数。它们对植被毒害程度的反映是一个反演序列,即植被从正常发育到毒害变态反射率分别在0.36~0.61~1.20(TM5/TM4)、6.25~3.3~1.3(TM4/TM3)降低(或称蓝移现象)。TM5/TM1对铁帽反应比较敏感,对植被中度以上毒害反应突出,它们的比值系数为3.38、2.90,分别高出背景值一倍以上。植被毒化区及蚀变区为高频域,通过滤波可压缩背景低频信息,高频域均可以鲜明的色调给以增高突出。
如图版Ⅰ.1所示,TM4/TM3(B)高值区位于植被毒害和蚀变岩区,R、G近等量合成后呈亮黄色调的局部斑块,即代表与矿化有关的信息。应指出的是,这种黄色斑并不确切指出矿化蚀变的现存位置,因分散晕的迁移造成的位置差,色斑往往位于矿化蚀变岩的下游。
熊耳山-外方山区,矿化蚀变均沿构造破碎带发育。构造破碎带在多数情况下为负地形,除硅化体矿化蚀变带有断续出露外,大部分地段被褐铁矿化及粘土质物质所充填。其主要成矿围岩为太古界太华群花岗-绿岩系和元古界熊耳群安山岩类。因此,需要增强的信息是发育在构造带中的富含羟基的粘土矿物集合体。
根据地物反射波谱资料,在Landsat-TM3、5、7波段目标物和背景的离散比较好。如进一步对蚀变带进行划分,还需要对以Landsat-TM3、5、7波段为基础进行混合像元处理,工作程序如下图3.3.5所示:
图3.3.5 羟基粘土矿物晕的提取工作程序图
从岩石反射波谱特征模式中可以了解到,TM7/TM1、TM5/TM4的比值结果突出了蚀变晕带中的核心——金属硫化物氧化铁帽,TM3/TM4的比值结果突出了植被受重金属毒害信息。傅氏变换将比值数据转成频率域,然后通过高滤波压抑低频背景,使蚀变信息得到很高的增强;经反变换(IFT)将信息还原到空间域,用已知蚀变区作为样本确定彩色分割的阀值,以此阀值为标准进行假彩色漫游或假彩色密度分割,即可得到反映图版Ⅰ.2。
在反射波谱特征模式中提出的压缩背景混合像元处理方法,即[(TM3×TM4)-K]和[COS-TM4×TM7]-K,这里的K值代表矿化蚀变带围岩的反射率(背景值)。压缩背景的方法在图像处理中叫“分段线性扩展”,即将图像亮度值的整个动态范围分成若干区段,按区段进行不同程度的扩展(图3.3.6)。
图中的L1为原图像的亮度值变量,L2为变换后影像的亮度值变量。a1、a2、a3分别为所选择的分段断点。断点之间的斜率,控制区段内亮度值的变换。
图中k1、k2、k3分别为对应区段内变换曲线的斜率。适当选择断点和斜率,可以获得特定亮度值区内目标图像的对比度增强,或者压缩某些目标的对比度。
图3.3.6 分段线性扩展示意图
图版Ⅰ.3是为提取导矿断裂信息而设计的图像处理程序得到的图像。为了突出断裂构造带中不同地段的植被富水性及蚀变等特征信息,分别应用TM4/TM3、TM5/TM1、TM5/TM2进行比值处理。对比值图像数据进行例拉伸(SCALE)得到灰阶为0~255的灰度图像。然后分别在比值图像中找出断裂特征信息的亮度值区间(192、128、115)为断点,将非目标区压缩为0,将目标区给予较大的扩展斜率,将扩展后的图像合成具断裂构造意义的线性体,以鲜明色调给以确切的显示。如将蚀变晕斑叠加其上,该断裂的控矿意义更加明确。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)