Linux网络协议栈7--ipsec收发包流程

Linux网络协议栈7--ipsec收发包流程,第1张

流程路径:ip_rcv() -->ip_rcv_finish() -->ip_local_deliver() --> ip_local_deliver_finish()

解封侧一定是ip报文的目的端,ip_rcv_finish中查到的路由肯定是本机路由(RTCF_LOCAL),调用 ip_local_deliver 处理。

下面是贴的网上的一张图片。

ip_local_deliver_finish中 根据上次协议类型,调用对应的处理函数。inet_protos 中挂载了各类协议的 *** 作集,对于AH或者ESP来说,是xfrm4_rcv,对于ipsec nat-t情况下,是udp协议的处理函数udp_rcv,内部才是封装的ipsec报文(AH或者ESP)。

xfrm4_rcv -->xfrm4_rcv_spi -->xfrm4_rcv_encap -->xfrm_input

最终调用 xfrm_input 做收包解封装流程。

1、创建SKB的安全路径;

2、解析报文,获取daddr、spi,加上协议类型(esp、ah等),就可以查询到SA了,这些是SA的key,下面列出了一组linux ipsec的state(sa)和policy,方便一眼就能看到关键信息;

3、调用SA对应协议类型的input函数,解包,并返回更上层的协议类型,type可为esp,ah,ipcomp等。对应的处理函数esp_input、ah_input等;

4、解码完成后,再根据ipsec的模式做解封处理,常用的有隧道模式和传输模式。对应xfrm4_mode_tunnel_input 和 xfrm4_transport_inout,处理都比较简单,隧道模式去掉外层头,传输模式只是设置一些skb的数据。

5、协议类型可以多层封装,如ESP+AH,所以需要再次解析内存协议,如果还是AH、ESP、COMP,则解析新的spi,返回2,查询新的SA处理报文。

6、经过上面流程处理,漏出了用户数据报文(IP报文),根据ipsec模式:

流程路径如下图,这里以转发流程为例,本机发送的包主要流程类似。

转发流程:

ip_forward 函数中调用xfrm4_route_forward,这个函数:

1、解析用户报文,查找对应的Ipsec policy(__xfrm_policy_lookup);

2、再根据policy的模版tmpl查找对应最优的SA(xfrm_tmpl_resolve),模版的内容以及和SA的对应关系见上面贴出的ip xfrm命令显示;

3、最后根据SA生成安全路由,挂载再skb的dst上; 一条用户流可以声明多个安全策略(policy),所以会对应多个SA,每个SA处理会生成一个安全路由项struct dst_entry结构(xfrm_resolve_and_create_bundle),这些安全路由项通过 child 指针链接为一个链表,其成员 output挂载了不同安全协议的处理函数,这样就可以对数据包进行连续的处理,比如先压缩,再ESP封装,再AH封装。

安全路由链的最后一个路由项一定是普通IP路由项,因为最终报文都得走普通路由转发出去,如果是隧道模式,在tunnel output封装完完成ip头后还会再查一次路由挂载到安全路由链的最后一个。

注: SA安全联盟是IPsec的基础,也是IPsec的本质。 SA是通信对等体间对某些要素的约定,例如使用哪种协议、协议的 *** 作模式、加密算法、特定流中保护数据的共享密钥以及SA的生存周期等。

然后,经过FORWARD点后,调用ip_forward_finish()-->dst_output,最终调用skb_dst(skb)->output(skb),此时挂载的xfrm4_output

本机发送流程简单记录一下,和转发流程殊途同归:

查询安全路由: ip_queue_xmit -->ip_route_output_flow -->__xfrm_lookup

封装发送:ip_queue_xmit -->ip_local_out -->dst_output -->xfrm4_output

注:

1). 无论转发还是本地发送,在查询安全路由之前都会查一次普通路由,如果查不到,报文丢弃,但这条路由不一定需要指向真实的下一跳的出接口,只要能匹配到报文DIP即可,如配置一跳其它接口的defualt。

2). strongswan是一款用的比较多的ipsec开源软件,协商完成后可以看到其创建了220 table,经常有人问里面的路由有啥用、为什么有时有有时无。这里做个测试记录: 1、220中貌似只有在tunnel模式且感兴趣流是本机发起(本机配置感兴趣流IP地址)的时候才会配置感兴趣流相关的路由,路由指定了source;2、不配置也没有关系,如1)中所说,只要存在感兴趣流的路由即可,只不过ping的时候需要指定source,否者可能匹配不到感兴趣流。所以感觉220这个表一是为了保证

ipsec封装发送流程:

xfrm4_output-->xfrm4_output_finish-->xfrm_output-->xfrm_output2-->xfrm_output_resume-->xfrm_output_one

xfrm4_output 函数先过POSTROUTING点,在封装之前可以先做SNAT。后面则调用xfrm_output_resume-->xfrm_output_one 做IPSEC封装最终走普通路由走IP发送。

贴一些网上的几张数据结构图

1、安全路由

2、策略相关协议处理结构

3、状态相关协议处理结构

我们一起学习了文件系统和磁盘 I/O 的工作原理,以及相应的性能分析和优化方法。接下来,我们将进入下一个重要模块—— Linux 的网络子系统。

由于网络处理的流程最复杂,跟我们前面讲到的进程调度、中断处理、内存管理以及 I/O 等都密不可分,所以,我把网络模块作为最后一个资源模块来讲解。

同 CPU、内存以及 I/O 一样,网络也是 Linux 系统最核心的功能。网络是一种把不同计算机或网络设备连接到一起的技术,它本质上是一种进程间通信方式,特别是跨系统的进程间通信,必须要通过网络才能进行。随着高并发、分布式、云计算、微服务等技术的普及,网络的性能也变得越来越重要。

说到网络,我想你肯定经常提起七层负载均衡、四层负载均衡,或者三层设备、二层设备等等。那么,这里说的二层、三层、四层、七层又都是什么意思呢?

实际上,这些层都来自国际标准化组织制定的开放式系统互联通信参考模型(Open System Interconnection Reference Model),简称为 OSI 网络模型。

但是 OSI 模型还是太复杂了,也没能提供一个可实现的方法。所以,在 Linux 中,我们实际上使用的是另一个更实用的四层模型,即 TCP/IP 网络模型。

TCP/IP 模型,把网络互联的框架分为应用层、传输层、网络层、网络接口层等四层,其中,

为了帮你更形象理解 TCP/IP 与 OSI 模型的关系,我画了一张图,如下所示:

当然了,虽说 Linux 实际按照 TCP/IP 模型,实现了网络协议栈,但在平时的学习交流中,我们习惯上还是用 OSI 七层模型来描述。比如,说到七层和四层负载均衡,对应的分别是 OSI 模型中的应用层和传输层(而它们对应到 TCP/IP 模型中,实际上是四层和三层)。

OSI引入了服务、接口、协议、分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型。

OSI先有模型,后有协议,先有标准,后进行实践;而TCP/IP则相反,先有协议和应用再提出了模型,且是参照的OSI模型。

OSI是一种理论下的模型,而TCP/IP已被广泛使用,成为网络互联事实上的标准。

有了 TCP/IP 模型后,在进行网络传输时,数据包就会按照协议栈,对上一层发来的数据进行逐层处理;然后封装上该层的协议头,再发送给下一层。

当然,网络包在每一层的处理逻辑,都取决于各层采用的网络协议。比如在应用层,一个提供 REST API 的应用,可以使用 HTTP 协议,把它需要传输的 JSON 数据封装到 HTTP 协议中,然后向下传递给 TCP 层。

而封装做的事情就很简单了,只是在原来的负载前后,增加固定格式的元数据,原始的负载数据并不会被修改。

比如,以通过 TCP 协议通信的网络包为例,通过下面这张图,我们可以看到,应用程序数据在每个层的封装格式。

这些新增的头部和尾部,增加了网络包的大小,但我们都知道,物理链路中并不能传输任意大小的数据包。网络接口配置的最大传输单元(MTU),就规定了最大的 IP 包大小。在我们最常用的以太网中,MTU 默认值是 1500(这也是 Linux 的默认值)。

一旦网络包超过 MTU 的大小,就会在网络层分片,以保证分片后的 IP 包不大于 MTU 值。显然,MTU 越大,需要的分包也就越少,自然,网络吞吐能力就越好。

理解了 TCP/IP 网络模型和网络包的封装原理后,你很容易能想到,Linux 内核中的网络栈,其实也类似于 TCP/IP 的四层结构。如下图所示,就是 Linux 通用 IP 网络栈的示意图:

我们从上到下来看这个网络栈,你可以发现,

这里我简单说一下网卡。网卡是发送和接收网络包的基本设备。在系统启动过程中,网卡通过内核中的网卡驱动程序注册到系统中。而在网络收发过程中,内核通过中断跟网卡进行交互。

再结合前面提到的 Linux 网络栈,可以看出,网络包的处理非常复杂。所以,网卡硬中断只处理最核心的网卡数据读取或发送,而协议栈中的大部分逻辑,都会放到软中断中处理。

我们先来看网络包的接收流程。

当一个网络帧到达网卡后,网卡会通过 DMA 方式,把这个网络包放到收包队列中;然后通过硬中断,告诉中断处理程序已经收到了网络包。

接着,网卡中断处理程序会为网络帧分配内核数据结构(sk_buff),并将其拷贝到 sk_buff 缓冲区中;然后再通过软中断,通知内核收到了新的网络帧。

接下来,内核协议栈从缓冲区中取出网络帧,并通过网络协议栈,从下到上逐层处理这个网络帧。比如,

最后,应用程序就可以使用 Socket 接口,读取到新接收到的数据了。

为了更清晰表示这个流程,我画了一张图,这张图的左半部分表示接收流程,而图中的粉色箭头则表示网络包的处理路径。

了解网络包的接收流程后,就很容易理解网络包的发送流程。网络包的发送流程就是上图的右半部分,很容易发现,网络包的发送方向,正好跟接收方向相反。

首先,应用程序调用 Socket API(比如 sendmsg)发送网络包。

由于这是一个系统调用,所以会陷入到内核态的套接字层中。套接字层会把数据包放到 Socket 发送缓冲区中。

接下来,网络协议栈从 Socket 发送缓冲区中,取出数据包;再按照 TCP/IP 栈,从上到下逐层处理。比如,传输层和网络层,分别为其增加 TCP 头和 IP 头,执行路由查找确认下一跳的 IP,并按照 MTU 大小进行分片。

分片后的网络包,再送到网络接口层,进行物理地址寻址,以找到下一跳的 MAC 地址。然后添加帧头和帧尾,放到发包队列中。这一切完成后,会有软中断通知驱动程序:发包队列中有新的网络帧需要发送。

最后,驱动程序通过 DMA ,从发包队列中读出网络帧,并通过物理网卡把它发送出去。

多台服务器通过网卡、交换机、路由器等网络设备连接到一起,构成了相互连接的网络。由于网络设备的异构性和网络协议的复杂性,国际标准化组织定义了一个七层的 OSI 网络模型,但是这个模型过于复杂,实际工作中的事实标准,是更为实用的 TCP/IP 模型。

TCP/IP 模型,把网络互联的框架,分为应用层、传输层、网络层、网络接口层等四层,这也是 Linux 网络栈最核心的构成部分。

我结合网络上查阅的资料和文章中的内容,总结了下网卡收发报文的过程,不知道是否正确:

当发送数据包时,与上述相反。链路层将数据包封装完毕后,放入网卡的DMA缓冲区,并调用系统硬中断,通知网卡从缓冲区读取并发送数据。

了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网络的性能情况。具体而言,哪些指标可以用来衡量 Linux 的网络性能呢?

实际上,我们通常用带宽、吞吐量、延时、PPS(Packet Per Second)等指标衡量网络的性能。

除了这些指标,网络的可用性(网络能否正常通信)、并发连接数(TCP 连接数量)、丢包率(丢包百分比)、重传率(重新传输的网络包比例)等也是常用的性能指标。

分析网络问题的第一步,通常是查看网络接口的配置和状态。你可以使用 ifconfig 或者 ip 命令,来查看网络的配置。我个人更推荐使用 ip 工具,因为它提供了更丰富的功能和更易用的接口。

以网络接口 eth0 为例,你可以运行下面的两个命令,查看它的配置和状态:

你可以看到,ifconfig 和 ip 命令输出的指标基本相同,只是显示格式略微不同。比如,它们都包括了网络接口的状态标志、MTU 大小、IP、子网、MAC 地址以及网络包收发的统计信息。

第一,网络接口的状态标志。ifconfig 输出中的 RUNNING ,或 ip 输出中的 LOWER_UP ,都表示物理网络是连通的,即网卡已经连接到了交换机或者路由器中。如果你看不到它们,通常表示网线被拔掉了。

第二,MTU 的大小。MTU 默认大小是 1500,根据网络架构的不同(比如是否使用了 VXLAN 等叠加网络),你可能需要调大或者调小 MTU 的数值。

第三,网络接口的 IP 地址、子网以及 MAC 地址。这些都是保障网络功能正常工作所必需的,你需要确保配置正确。

第四,网络收发的字节数、包数、错误数以及丢包情况,特别是 TX 和 RX 部分的 errors、dropped、overruns、carrier 以及 collisions 等指标不为 0 时,通常表示出现了网络 I/O 问题。其中:

ifconfig 和 ip 只显示了网络接口收发数据包的统计信息,但在实际的性能问题中,网络协议栈中的统计信息,我们也必须关注。你可以用 netstat 或者 ss ,来查看套接字、网络栈、网络接口以及路由表的信息。

我个人更推荐,使用 ss 来查询网络的连接信息,因为它比 netstat 提供了更好的性能(速度更快)。

比如,你可以执行下面的命令,查询套接字信息:

netstat 和 ss 的输出也是类似的,都展示了套接字的状态、接收队列、发送队列、本地地址、远端地址、进程 PID 和进程名称等。

其中,接收队列(Recv-Q)和发送队列(Send-Q)需要你特别关注,它们通常应该是 0。当你发现它们不是 0 时,说明有网络包的堆积发生。当然还要注意,在不同套接字状态下,它们的含义不同。

当套接字处于连接状态(Established)时,

当套接字处于监听状态(Listening)时,

所谓全连接,是指服务器收到了客户端的 ACK,完成了 TCP 三次握手,然后就会把这个连接挪到全连接队列中。这些全连接中的套接字,还需要被 accept() 系统调用取走,服务器才可以开始真正处理客户端的请求。

与全连接队列相对应的,还有一个半连接队列。所谓半连接是指还没有完成 TCP 三次握手的连接,连接只进行了一半。服务器收到了客户端的 SYN 包后,就会把这个连接放到半连接队列中,然后再向客户端发送 SYN+ACK 包。

类似的,使用 netstat 或 ss ,也可以查看协议栈的信息:

这些协议栈的统计信息都很直观。ss 只显示已经连接、关闭、孤儿套接字等简要统计,而 netstat 则提供的是更详细的网络协议栈信息。

比如,上面 netstat 的输出示例,就展示了 TCP 协议的主动连接、被动连接、失败重试、发送和接收的分段数量等各种信息。

接下来,我们再来看看,如何查看系统当前的网络吞吐量和 PPS。在这里,我推荐使用我们的老朋友 sar,在前面的 CPU、内存和 I/O 模块中,我们已经多次用到它。

给 sar 增加 -n 参数就可以查看网络的统计信息,比如网络接口(DEV)、网络接口错误(EDEV)、TCP、UDP、ICMP 等等。执行下面的命令,你就可以得到网络接口统计信息:

这儿输出的指标比较多,我来简单解释下它们的含义。

其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:

其中,Bandwidth 可以用 ethtool 来查询,它的单位通常是 Gb/s 或者 Mb/s,不过注意这里小写字母 b ,表示比特而不是字节。我们通常提到的千兆网卡、万兆网卡等,单位也都是比特。如下你可以看到,我的 eth0 网卡就是一个千兆网卡:

我们通常使用带宽、吞吐量、延时等指标,来衡量网络的性能;相应的,你可以用 ifconfig、netstat、ss、sar、ping 等工具,来查看这些网络的性能指标。

小狗同学问到: 老师,您好 ss —lntp 这个 当session处于listening中 rec-q 确定是 syn的backlog吗?

A: Recv-Q为全连接队列当前使用了多少。 中文资料里这个问题讲得最明白的文章: https://mp.weixin.qq.com/s/yH3PzGEFopbpA-jw4MythQ

看了源码发现,这个地方讲的有问题.关于ss输出中listen状态套接字的Recv-Q表示全连接队列当前使用了多少,也就是全连接队列的当前长度,而Send-Q表示全连接队列的最大长度

一个报文的产生和发送,都需要硬件和软件的完美配合。

硬件层面接收到报文之后,做一系列的初始化 *** 作,之后驱动才开始把一个封包封装为skb。

当然这是在x86架构下,如果是在cavium架构下,封包是wqe形式存在。

不管是skb还是wqe,都仅仅是一种手段,一种达到完成报文传输所采用的一种解决方案,一种方法而已。

或许处理方案的具体实现细节差别万千,但是基本的原理,都是殊途同归,万变不离其宗。

skb的产生,让Linux协议栈旅程的开启,具备了最基本的条件,接下来的协议栈之旅,才会更加精彩。

写作本文的原因是现在本机网络 IO 应用非常广。

在 php 中 一般 nginx 和 php-fpm 是通过 127.0.0.1 来进行通信的;

在微服务中,由于 side car 模式的应用,本机网络请求更是越来越多。

所以,如果能深度理解这个问题在各种网络通信应用的技术实践中将非常的有意义。

今天咱们就把 127.0.0.1 本机网络通信相关问题搞搞清楚!

为了方便讨论,我把这个问题拆分成3问:

1)127.0.0.1 本机网络 IO 需要经过网卡吗?

2)和外网网络通信相比,在内核收发流程上有啥差别?

3)使用 127.0.0.1 能比 192.168.x.x 更快吗?

在上面这幅图中,我们看到用户数据被拷贝到内核态,然后经过协议栈处理后进入到了 RingBuffer 中。随后网卡驱动真正将数据发送了出去。当发送完成的时候,是通过硬中断来通知 CPU,然后清理 RingBuffer。

当数据包到达另外一台机器的时候,Linux 数据包的接收过程开始了。

当网卡收到数据以后,CPU发起一个中断,以通知 CPU 有数据到达。

当CPU收到中断请求后,会去调用网络驱动注册的中断处理函数,触发软中断。

ksoftirqd 检测到有软中断请求到达,开始轮询收包,收到后交由各级协议栈处理。

当协议栈处理完并把数据放到接收队列的之后,唤醒用户进程(假设是阻塞方式)。

关于跨机网络通信的理解,可以通俗地用下面这张图来总结一下:

前面,我们看到了跨机时整个网络数据的发送过程 。

在本机网络 IO 的过程中,流程会有一些差别。

为了突出重点,本节将不再介绍整体流程,而是只介绍和跨机逻辑不同的地方。

有差异的地方总共有两个,分别是路由和驱动程序。

对于本机网络 IO 来说,特殊之处在于在 local 路由表中就能找到路由项,对应的设备都将使用 loopback 网卡,也就是我们常见的 lO。

从上述结果可以看出,对于目的是 127.0.0.1 的路由在 local 路由表中就能够找到了。

对于是本机的网络请求,设备将全部都使用 lo 虚拟网卡,接下来的网络层仍然和跨机网络 IO 一样。

本机网络 IO 需要进行 IP 分片吗?

因为和正常的网络层处理过程一样,如果 skb 大于 MTU 的话,仍然会进行分片。

只不过 lo 的 MTU 比 Ethernet 要大很多。

通过 ifconfig 命令就可以查到,普通网卡一般为 1500,而 lO 虚拟接口能有 65535。

为什么我把“驱动”加个引号呢,因为 loopback 是一个纯软件性质的虚拟接口,并没有真正意义上的驱动。

在邻居子系统函数中经过处理,进入到网络设备子系统,只有触发完软中断,发送过程就算是完成了。

在跨机的网络包的接收过程中,需要经过硬中断,然后才能触发软中断。

而在本机的网络 IO 过程中,由于并不真的过网卡,所以网卡实际传输,硬中断就都省去了。直接从软中断开始,送进协议栈。

网络再往后依次是传输层,最后唤醒用户进程,这里就不多展开了。

我们来总结一下本机网络通信的内核执行流程:

回想下跨机网络 IO 的流程:

通过本文的叙述,我们确定地得出结论,不需要经过网卡。即使了把网卡拔了本机网络是否还可以正常使用的。

总的来说,本机网络 IO 和跨机 IO 比较起来,确实是节约了一些开销。发送数据不需要进 RingBuffer 的驱动队列,直接把 skb 传给接收协议栈(经过软中断)。

但是在内核其它组件上可是一点都没少:系统调用、协议栈(传输层、网络层等)、网络设备子系统、邻居子系统整个走了一个遍。连“驱动”程序都走了(虽然对于回环设备来说只是一个纯软件的虚拟出来的东东)。所以即使是本机网络 IO,也别误以为没啥开销。

先说结论:我认为这两种使用方法在性能上没有啥差别。

我觉得有相当大一部分人都会认为访问本机server 的话,用 127.0.0.1 更快。原因是直觉上认为访问 IP 就会经过网卡。

其实内核知道本机上所有的 IP,只要发现目的地址是本机 IP 就可以全走 loopback 回环设备了。

本机其它 IP 和 127.0.0.1 一样,也是不用过物理网卡的,所以访问它们性能开销基本一样!

How SKBs work - Linux kernel

http://vger.kernel.org/~davem/skb.html

一篇解读Linux网络协议栈

https://zhuanlan.zhihu.com/p/475319464

你真的了解127.0.0.1和0.0.0.0的区别?

http://www.52im.net/thread-2928-1-1.html

深入 *** 作系统,彻底搞懂127.0.0.1本机网络通信

http://www.52im.net/thread-3590-1-1.html


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8297900.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存