1)执行top命令,或使用-H选项(显示所有线程),找到相关的高CPU的PID
2)生成thread dump 快照(kill -3 PID)。
3)将top命令输出PID转换为HEX格式(16进制)
4)在thread dump data中搜索nid=<Hex PID>
5)分析受影响的thread和stack trace,精确定位代码。
top output sample
[plain] view plain copy
PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
...........
22111 userWLS 9 0 86616 84M 26780 S 0.0 40.1 0:00 java
使用线程间通信,在才确定的代码位置使用mutex就可以完成你所要的功能。线程互斥
互斥意味着“排它”,即两个线程不能同时进入被互斥保护的代码。Linux下可以通过pthread_mutex_t 定义互斥体机制完成多线程的互斥 *** 作,该机制的作用是对某个需要互斥的部分,在进入时先得到互斥体,如果没有得到互斥体,表明互斥部分被其它线程拥有,此时欲获取互斥体的线程阻塞,直到拥有该互斥体的线程完成互斥部分的 *** 作为止。
下面的代码实现了对共享全局变量x 用互斥体mutex 进行保护的目的:
int x// 进程中的全局变量
pthread_mutex_t mutex
pthread_mutex_init(&mutex, NULL)//按缺省的属性初始化互斥体变量mutex
pthread_mutex_lock(&mutex)// 给互斥体变量加锁
… //对变量x 的 *** 作
phtread_mutex_unlock(&mutex)// 给互斥体变量解除锁
线程同步
同步就是线程等待某个事件的发生。只有当等待的事件发生线程才继续执行,否则线程挂起并放弃处理器。当多个线程协作时,相互作用的任务必须在一定的条件下同步。
Linux下的C语言编程有多种线程同步机制,最典型的是条件变量(condition variable)。pthread_cond_init用来创建一个条件变量,其函数原型为:
pthread_cond_init (pthread_cond_t *cond, const pthread_condattr_t *attr)
pthread_cond_wait和pthread_cond_timedwait用来等待条件变量被设置,值得注意的是这两个等待调用需要一个已经上锁的互斥体mutex,这是为了防止在真正进入等待状态之前别的线程有可能设置该条件变量而产生竞争。pthread_cond_wait的函数原型为:
pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex)
pthread_cond_broadcast用于设置条件变量,即使得事件发生,这样等待该事件的线程将不再阻塞:
pthread_cond_broadcast (pthread_cond_t *cond)
pthread_cond_signal则用于解除某一个等待线程的阻塞状态:
pthread_cond_signal (pthread_cond_t *cond)
pthread_cond_destroy 则用于释放一个条件变量的资源。
在头文件semaphore.h 中定义的信号量则完成了互斥体和条件变量的封装,按照多线程程序设计中访问控制机制,控制对资源的同步访问,提供程序设计人员更方便的调用接口。
sem_init(sem_t *sem, int pshared, unsigned int val)
这个函数初始化一个信号量sem 的值为val,参数pshared 是共享属性控制,表明是否在进程间共享。
sem_wait(sem_t *sem)
调用该函数时,若sem为无状态,调用线程阻塞,等待信号量sem值增加(post )成为有信号状态;若sem为有状态,调用线程顺序执行,但信号量的值减一。
sem_post(sem_t *sem)
调用该函数,信号量sem的值增加,可以从无信号状态变为有信号状态。
pthread_join一般是主线程来调用,用来等待子线程退出,因为是等待,所以是阻塞的,一般主线程会依次join所有它创建的子线程。pthread_exit一般是子线程调用,用来结束当前线程。
子线程可以通过pthread_exit传递一个返回值,而主线程通过pthread_join获得该返回值,从而判断该子线程的退出是正常还是异常。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)