什么时候会kernel panic?

什么时候会kernel panic?,第1张

什么时候可能出现内核崩溃,kernrl panic呢?

Linux在中断处理程序中,它不处于任何一个进程上下文,如果使用可能睡眠的函数,则系统调度会被破坏,导致kernel panic。因此,在中断处理程序中,是不能使用有可能导致睡眠的函数(例如信号量等)。

在中断发起的软中断中,其上下文环境有可能是中断上下文,同理,也不能调用可能导致睡眠的函数。软中断执行时,全局中断是打开的,而中断程序执行时,全局中断是禁止的。

软中断除了系统调度进入点,当软中断数量频繁时,内核中有一个专门的软中断的后台程序daemon来处理其事务。

还有内核堆栈溢出,或者指针异常访问时,也会出现kernel panic。

堆栈溢出:程序循环或者多层嵌套的深度过多时,可能会导致栈溢出。

显而易见,除0异常、内存访问越界、缓冲区溢出等错误时,当这些事件发生在应用程序时,Linux内核的异常处理机制可以对这些由应用程序引起的情况予以处理。当应用程序出现不可恢复性错误时,Linux内核可以仅仅终止产生错误的应用程序,而不影响其他程序。如果上述 *** 作发生在内核空间,就会引起kernel panic。

还有内核陷入死锁状态,自旋锁嵌套、在内核线程中,存在死循环的 *** 作等等都会引起kermel panic。

1.1 Linux内核异常处理相关文件

Linux内核中,异常处理主要由两个文件完成,entry.S和traps.c,当然还有一些其它异常处理函数分布于fault.c, memory.c等等。entry.S包含异常的入口、进入异常处理C函数前的压栈、退出C函数前的出栈、一些fork函数相关的处理代码(暂不分析)、任务切换汇编处理过程(cpu_switch_to函数,暂不分析)。traps.c主要包含异常处理C函数。

本文主要分析entry.S,对于traps.c作简要介绍。

1.2 执行kernel_entry之前的栈

1.3 执行kernel_entry时的栈

1.4 执行kernel_exit 时的栈

1.5 entry.s代码分析

/*

* Low-level exception handling code

*

* Copyright (C) 2012 ARM Ltd.

* Authors: Catalin Marinas <catalin.marinas@arm.com>

* Will Deacon <will.deacon@arm.com>

*

* This program is free softwareyou can redistribute it and/or modify

* it under the terms of the GNU General Public License version 2 as

* published by the Free Software Foundation.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTYwithout even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <linux/init.h>

#include <linux/linkage.h>

#include <asm/assembler.h>

#include <asm/asm-offsets.h>

#include <asm/errno.h>

#include <asm/thread_info.h>

#include <asm/unistd.h>

#include <asm/unistd32.h>

/*

* Bad Abort numbers

*-----------------

*/

#define BAD_SYNC 0

#define BAD_IRQ 1

#define BAD_FIQ 2

#define BAD_ERROR 3

//根据该结构体内容

/*

struct pt_regs {

union {

struct user_pt_regs user_regs//结构体user_pt_regs和结构体pt_regs内容一样

struct { //共用体存储31个通用寄存器,外加sp,pc,pstate三个特殊寄存器

//该结构体用于异常处理的压栈d栈 *** 作

u64 regs[31]

u64 sp

u64 pc

u64 pstate

}

}

u64 orig_x0

u64 syscallno

}

*/

//S_FRAME_SIZE定义在asm-offsets.c中,DEFINE(S_FRAME_SIZE,sizeof(struct pt_regs))

//即结构体pt_regs的大小,结构体pt_regs的定义见上面

//S_LR定义:DEFINE(S_LR,offsetof(struct pt_regs, regs[30]))

//即31号寄存器在结构体pt_regs中的偏移量

//阅读以下内容请参考图1 和图2

.macro kernel_entry, el, regsize = 64

sub sp, sp, #S_FRAME_SIZE - S_LR // room for LR, SP, SPSR, ELR,见图2中sp'指向的位置

.if \regsize == 32

mov w0, w0 // zero upper 32 bits of x0

.endif

/*

*.macro push, xreg1, xreg2 //压栈两个寄存器

*stp \xreg1, \xreg2, [sp, #-16]! //注意!!!push指令也改变sp的值!!!

*.endm

*/

push x28, x29 //进行压栈 *** 作,push也是一个宏定义,因为ARMv8没有push指令,用stp代替

push x26, x27

push x24, x25

push x22, x23

push x20, x21

push x18, x19

push x16, x17

push x14, x15

push x12, x13

push x10, x11

push x8, x9

push x6, x7

push x4, x5

push x2, x3

push x0, x1 //此时sp指向位置见图2中sp''

.if \el == 0 //如果异常级是el0,把el0的sp栈指针给x21寄存器

mrs x21, sp_el0

.else

add x21, sp, #S_FRAME_SIZE //如果异常级不是el0,把sp指针指向的地方加上pt_regs大小后的地址放入x21,

//即指向没进入kernel_entry函数钱的sp指向的位置,见图2中x21指向的地址

.endif

mrs x22, elr_el1 //把el1的lr寄存器给x22

mrs x23, spsr_el1 //把spsr给x23

stp lr, x21, [sp, #S_LR] //把lr,x21寄存器存入sp+S_LR指向的地方

stp x22, x23, [sp, #S_PC] //把lr,存入sp+s_PC指向的位置,用于异常返回

/*

* Set syscallno to -1 by default (overridden later if real syscall).

*/

.if \el == 0

mvn x21, xzr

str x21, [sp, #S_SYSCALLNO]

.endif

/*

* Registers that may be useful after this macro is invoked:

*

* x21 - aborted SP

* x22 - aborted PC

* x23 - aborted PSTATE

*/

.endm

.macro kernel_exit, el, ret = 0

//把此时sp(即图2中sp'')+S_PC位置处开始的16字节内容分别给x21,x22

//即把栈中存的x21和x22内容取出来

ldp x21, x22, [sp, #S_PC] // load ELR, SPSR

.if \el == 0

ldr x23, [sp, #S_SP] // load return stack pointer,取出

.endif

.if \ret

ldr x1, [sp, #S_X1] // preserve x0 (syscall return),如果ret=1,则保存x0,用于系统调用,暂不分析

add sp, sp, S_X2

.else

pop x0, x1 //如果ret=0,d出x0,x1

.endif

pop x2, x3 // load the rest of the registers

pop x4, x5

pop x6, x7

pop x8, x9

msr elr_el1, x21 // set up the return data,把前面d出的x21,x22分别赋值给elr_el1,spsr_el1

msr spsr_el1, x22

.if \el == 0

msr sp_el0, x23

.endif

pop x10, x11

pop x12, x13

pop x14, x15

pop x16, x17

pop x18, x19

pop x20, x21

pop x22, x23

pop x24, x25

pop x26, x27

pop x28, x29

ldr lr, [sp], #S_FRAME_SIZE - S_LR // load LR and restore SP,把lrd出

eret // return to kernel,异常返回,该指令会把lr给pc,完成跳转

.endm

.macro get_thread_info, rd

mov \rd, sp

and \rd, \rd, #~((1 <<13) - 1) // top of 8K stack

.endm

/*

* These are the registers used in the syscall handler, and allow us to

* have in theory up to 7 arguments to a function - x0 to x6.

*

* x7 is reserved for the system call number in 32-bit mode.

*/

sc_nr .req x25 // number of system calls

scno .req x26 // syscall number

stbl .req x27 // syscall table pointer

tsk .req x28 // current thread_info

/*

* Interrupt handling.

*/

.macro irq_handler

ldr x1, handle_arch_irq

mov x0, sp

blr x1

.endm

.text

/*

* Exception vectors.

*/

.macro ventry label //这里是2^7对齐,即对齐到内存地址的0x80

.align 7

b \label

.endm

.align 11

/* ENTRY也是一个宏,定义在include/linkage.h中

* #ifndef ENTRY

* #define ENTRY(name) \

* .globl name\

* ALIGN\

* name:

* #endif

你好!有幸回答你的问题!首先我得告诉你,进程之间是不直接共享内存的,他们的数据通信都是要专门的通信机制的,比如:内存共享、消息队列,信号量等等,这儿的内存共享是linux进程的一种通信机制,为了好理解,你就想成一种通信工具吧,另外,段错误一般是指你访问了错误地址,非法地址,越界访问等错误 *** 作。回首去看你的代码吧,看哪儿访问了非法地址!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8499993.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存