linux怎么卸载boost库

linux怎么卸载boost库,第1张

Caffe需要预先安装一些依赖项,首先是CUDA驱动。不论是CentOS还是Ubuntu都预装了开源的nouveau显卡驱动(SUSE没有这种问题),如果不禁用,则CUDA驱动不能正确安装。以Ubuntu为例,介绍一下这里的处理方法,当然也有其他处理方法。# sudo vi/etc/modprobe.d/blacklist.conf# 增加一行 :blacklist nouveausudoapt-get --purge remove xserver-xorg-video-nouveau #把官方驱动彻底卸载:sudoapt-get --purge remove nvidia-*#清除之前安装的任何NVIDIA驱动sudo service lightdm stop#进命令行,关闭Xserversudo kill all Xorg然后下载并安装 NVIDIA CUDA驱动包,接着安装安装BLAS、OpenCV、Boost这三个库。BLAS数学库可以是ATLAS, MKL, 或 OpenBLAS,OpenCV要求2.4以上版本,Boost要求1.55版本以上。可选安装Python MATLAB Caffe 库,还有 numpy , pandas 之类的Python类库。安装MATLAB,以确保mex 在path路径中,这些就够你折腾一个星期了,完事以后就可以编译安装了:cp Makefile.config.example Makefile.config# Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired)make allmake testmake runtest 哦对了,Caffe 显卡要求:Titan Xs, K80s, GTX 980s, K40s, K20s, Titans, and GTX 770s

1、在英伟达的官网上下载对应系统版本的cuda5.5工具包,我的笔记本是32位的,下载的包是cuda_5.5.22_linux_32.run,当然下载deb包也可以,deb包可双击安装。推荐使用run包。

2、检查自己的系统是否符合安装条件,这一点很重要,我开始没有检测GCC,导致后面几次安装失败。命令$lspci | grep -i nvidia ,检测电脑是否安装NVIDIA显卡,命令$gcc --version,检测GCC版本,注意:CUDA5.5只支持GCC4.6版本,如果显示的不是下图所示,则需要重新将GCC链接。同时安装头文件和编译环境$sudo apt-get install linux-headers-$(uname -r) build-essential

3、gcc版本是4.6的跳过此步。如果gcc版本不是4.6的,则需要将GCC重新链接,在目录/usr/bin下,只需两个命令即可完成重新链接。

$sudo mv gcc gcc.bak

$sudo ln -s gcc-4.6 gcc

4、删除之前的Ubuntu nvidia驱动包,$sudo apt-get –purge remove nvidia*,并将开源驱动nouveau屏蔽掉,使用命令$sudo vim /etc/modprobe.d/blacklist.conf,添加blacklist vga16fb blacklist nouveau blacklist rivafb blacklist nvidiafb blacklist rivatv。

5、关闭图形环境,$sudo stop lightdm,按Ctrl+Alt+F1,打开一个终端,登录。进入下载的Ubuntu nvidia驱动安装文件所在目录,$sudo sh ./cuda_5.5.22_linux_32.run命令进行安装。如果遇到failed,不用着急,打开安装log,排查问题,warning不用管,看ERROR。

6、安装完成后,需要重启。此时电脑清晰多了,说明安装成功。 从事GPU开发的我们还需要装上cuda和openCL库的支持:$sudo apt-get install nvidia-current-dev。

注意事项

ubuntu不需要重新编译内核,记得centos和red hat需要,命令也简单:$sudo dracut -v /boot/initramfs-$(uname -r).img $(uname -r)

相信大家学并行编程的时候会用到CUDA,然而Nvidia CUDA在ubuntu Linux上的安装不总是那么顺利的,现在我将我安装的经验提供给大家参考。

工具/原料

这里以ubuntu 12.04为例 cuda 5.5-32位

方法/步骤

在英伟达的官网上下载对应系统版本的cuda5.5工具包,我的笔记本是32位的,下载的包是cuda_5.5.22_linux_32.run,当然下载deb包也可以,deb包可双击安装。推荐使用run包。

检查自己的系统是否符合安装条件,这一点很重要,我开始没有检测GCC,导致后面几次安装失败。命令$lspci | grep -i nvidia ,检测电脑是否安装NVIDIA显卡,命令$gcc --version,检测GCC版本,注意:CUDA5.5只支持GCC4.6版本,如果显示的不是下图所示,则需要重新将GCC链接。同时安装头文件和编译环境$sudo apt-get install linux-headers-$(uname -r) build-essential

gcc版本是4.6的跳过此步。如果gcc版本不是4.6的,则需要将GCC重新链接,在目录/usr/bin下,只需两个命令即可完成重新链接。

$sudo mv gcc gcc.bak

$sudo ln -s gcc-4.6 gcc

删除之前的Ubuntu nvidia驱动包,$sudo apt-get –purge remove nvidia*,并将开源驱动nouveau屏蔽掉,使用命令$sudo vim /etc/modprobe.d/blacklist.conf,添加blacklist vga16fb blacklist nouveau blacklist rivafb blacklist nvidiafb blacklist rivatv。

关闭图形环境,$sudo stop lightdm,按Ctrl+Alt+F1,打开一个终端,登录。进入下载的Ubuntu nvidia驱动安装文件所在目录,$sudo sh ./cuda_5.5.22_linux_32.run命令进行安装。如果遇到failed,不用着急,打开安装log,排查问题,warning不用管,看ERROR。

安装完成后,需要重启。此时电脑清晰多了,说明安装成功。 从事GPU开发的我们还需要装上cuda和openCL库的支持:$sudo apt-get install nvidia-current-dev。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8802571.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-21
下一篇 2023-04-21

发表评论

登录后才能评论

评论列表(0条)

保存