Linux信号量

Linux信号量,第1张

信号量是包含一个非负整数型的变量,并且带有两个原子 *** 作wait和signal。Wait还可以被称为down、P或lock,signal还可以被称为up、V、unlock或post。在UNIX的API中(POSIX标准)用的是wait和post。

对于wait *** 作,如果信号量的非负整形变量S大于0,wait就将其减1,如果S等于0,wait就将调用线程阻塞;对于post *** 作,如果有线程在信号量上阻塞(此时S等于0),post就会解除对某个等待线程的阻塞,使其从wait中返回,如果没有线程阻塞在信号量上,post就将S加1.

由此可见,S可以被理解为一种资源的数量,信号量即是通过控制这种资源的分配来实现互斥和同步的。如果把S设为1,那么信号量即可使多线程并发运行。另外,信号量不仅允许使用者申请和释放资源,而且还允许使用者创造资源,这就赋予了信号量实现同步的功能。可见信号量的功能要比互斥量丰富许多。

POSIX信号量是一个sem_t类型的变量,但POSIX有两种信号量的实现机制: 无名信号量 命名信号量 。无名信号量只可以在共享内存的情况下,比如实现进程中各个线程之间的互斥和同步,因此无名信号量也被称作基于内存的信号量;命名信号量通常用于不共享内存的情况下,比如进程间通信。

同时,在创建信号量时,根据信号量取值的不同,POSIX信号量还可以分为:

下面是POSIX信号量函数接口:

信号量的函数都以sem_开头,线程中使用的基本信号函数有4个,他们都声明在头文件semaphore.h中,该头文件定义了用于信号量 *** 作的sem_t类型:

【sem_init函数】:

该函数用于创建信号量,原型如下:

该函数初始化由sem指向的信号对象,设置它的共享选项,并给它一个初始的整数值。pshared控制信号量的类型,如果其值为0,就表示信号量是当前进程的局部信号量,否则信号量就可以在多个进程间共享,value为sem的初始值。

该函数调用成功返回0,失败返回-1。

【sem_destroy函数】:

该函数用于对用完的信号量进行清理,其原型如下:

成功返回0,失败返回-1。

【sem_wait函数】:

该函数用于以原子 *** 作的方式将信号量的值减1。原子 *** 作就是,如果两个线程企图同时给一个信号量加1或减1,它们之间不会互相干扰。其原型如下:

sem指向的对象是sem_init调用初始化的信号量。调用成功返回0,失败返回-1。

sem_trywait()则是sem_wait()的非阻塞版本,当条件不满足时(信号量为0时),该函数直接返回EAGAIN错误而不会阻塞等待。

sem_timedwait()功能与sem_wait()类似,只是在指定的abs_timeout时间内等待,超过时间则直接返回ETIMEDOUT错误。

【sem_post函数】:

该函数用于以原子 *** 作的方式将信号量的值加1,其原型如下:

与sem_wait一样,sem指向的对象是由sem_init调用初始化的信号量。调用成功时返回0,失败返回-1。

【sem_getvalue函数】:

该函数返回当前信号量的值,通过restrict输出参数返回。如果当前信号量已经上锁(即同步对象不可用),那么返回值为0,或为负数,其绝对值就是等待该信号量解锁的线程数。

【实例1】:

【实例2】:

之所以称为命名信号量,是因为它有一个名字、一个用户ID、一个组ID和权限。这些是提供给不共享内存的那些进程使用命名信号量的接口。命名信号量的名字是一个遵守路径名构造规则的字符串。

【sem_open函数】:

该函数用于创建或打开一个命名信号量,其原型如下:

参数name是一个标识信号量的字符串。参数oflag用来确定是创建信号量还是连接已有的信号量。

oflag的参数可以为0,O_CREAT或O_EXCL:如果为0,表示打开一个已存在的信号量;如果为O_CREAT,表示如果信号量不存在就创建一个信号量,如果存在则打开被返回,此时mode和value都需要指定;如果为O_CREAT|O_EXCL,表示如果信号量存在则返回错误。

mode参数用于创建信号量时指定信号量的权限位,和open函数一样,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示创建信号量时,信号量的初始值。

【sem_close函数】:

该函数用于关闭命名信号量:

单个程序可以用sem_close函数关闭命名信号量,但是这样做并不能将信号量从系统中删除,因为命名信号量在单个程序执行之外是具有持久性的。当进程调用_exit、exit、exec或从main返回时,进程打开的命名信号量同样会被关闭。

【sem_unlink函数】:

sem_unlink函数用于在所有进程关闭了命名信号量之后,将信号量从系统中删除:

【信号量 *** 作函数】:

与无名信号量一样, *** 作信号量的函数如下:

命名信号量是随内核持续的。当命名信号量创建后,即使当前没有进程打开某个信号量,它的值依然保持,直到内核重新自举或调用sem_unlink()删除该信号量。

无名信号量的持续性要根据信号量在内存中的位置确定:

很多时候信号量、互斥量和条件变量都可以在某种应用中使用,那这三者的差异有哪些呢?下面列出了这三者之间的差异:

和用于分配、释放共享内存的 shmget 和 shmctl 类似,系统调用 semget 和 semctl 负责分配、释放信号量。调用 semget 函数并传递如下参数:一个用于标识信号量组的键值,该组中包含的信号量数量和与 shmget 所需的相同的权限位标识。该函数返回的是信号量组的标识符。您可以通过指定正确的键值来获取一个已经存在的信号量的标识符;这种情况下,传递的信号量组的容量可以为0。

信号量会一直保存在系统中,甚至所有使用它们的进程都退出后也不会自动被销毁。最后一个使用信号量的进程必须明确地删除所使用的信号量组,来确保系统中不会有太多闲置的信号量组,从而导致无法创建新的信号量组。可以通过调用semctl来删除信号量组。调用时的四个参数分别为信号量组的标识符, *** 作的信号量在组中的编号、常量IPC_RMID 和一个 union semun 类型的任意值(被忽略)。调用进程的有效用户 id 必须与分配这个信号量组的用户 id 相同(或者调用进程为 root 权限亦可)。与共享内存不同,删除一个信号量组会导致 Linux 立即释放资源。

代码 5.2 展示了用于分配和释放一个二元信号量的函数。

代码 5.2 (sem_all_deall.c)分配和释放二元信号量

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/types.h>/* 我们必须自己定义 semun 联合类型。 */

union semun { int valstruct semid_ds *bufunsigned short int *arraystruct seminfo *__buf}

/* 获取一个二元信号量的标识符。如果需要则创建这个信号量 */

int binary_semaphore_allocation (key_t key, int sem_flags)

{

return semget (key, 1, sem_flags)

} /* 释放二元信号量。所有用户必须已经结束使用这个信号量。如果失败,返回 -1 */

int binary_semaphore_deallocate (int semid)

{

union semun ignored_argumentreturn semctl (semid, 1, IPC_RMID, ignored_argument)

}

信号量在进程是以有名信号量进行通信的,在线程是以无名信号进行通信的,因为线程linux还没有实现进程间的通信,所以在sem_init的第二个参数要为0,而且在多线程间的同步是可以通过有名信号量也可通过无名信号,但是一般情况线程的同步是无名信号量,无名信号量使用简单,而且sem_t存储在进程空间中,有名信号量必须LINUX内核管理,由内核结构struct ipc_ids 存储,是随内核持续的,系统关闭,信号量则删除,当然也可以显示删除,通过系统调用删除,

消息队列,信号量,内存共享,这几个都是一样的原理。,只不过信号量分为有名与无名

无名使用 <semaphore.h>,

有名信号量<sys/sem.h>

无名信号量不能用进程间通信,

//无名与有名的区别,有名需要KEY值与IPC标识

所以sem_init的第二个参数必须为0,,,,


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8910579.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-22
下一篇 2023-04-22

发表评论

登录后才能评论

评论列表(0条)

保存