Linux 进程管理之进程调度与切换

Linux 进程管理之进程调度与切换,第1张

我们知道,进程运行需要各种各样的系统资源,如内存、文件、打印机和最

宝贵的 CPU 等,所以说,调度的实质就是资源的分配。系统通过不同的调度算法(Scheduling Algorithm)来实现这种资源的分配。通常来说,选择什么样的调度算法取决于资源分配的策略(Scheduling Policy)。

有关调度相关的结构保存在 task_struct 中,如下:

active_mm 是为内核线程而引入的,因为内核线程没有自己的地址空间,为了让内核线程与普通进程具有统一的上下文切换方式,当内核线程进行上下文切换时,让切换进来的线程的 active_mm 指向刚被调度出去的进程的 active_mm(如果进程的mm 域不为空,则其 active_mm 域与 mm 域相同)。

在 linux 2.6 中 sched_class 表示该进程所属的调度器类有3种:

进程的调度策略有5种,用户可以调用调度器里不同的调度策略:

在每个 CPU 中都有一个自身的运行队列 rq,每个活动进程只出现在一个运行队列中,在多个 CPU 上同时运行一个进程是不可能的。

运行队列是使用如下结构实现的:

tast 作为调度实体加入到 CPU 中的调度队列中。

系统中所有的运行队列都在 runqueues 数组中,该数组的每个元素分别对应于系统中的一个 CPU。在单处理器系统中,由于只需要一个就绪队列,因此数组只有一个元素。

内核也定义了一下便利的宏,其含义很明显。

Linux、c/c++服务器开发篇-------我们来聊聊进程的那些事

Linux内核 进程间通信组件的实现

学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括 C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg 等),免费分享

在分析调度流程之前,我们先来看在什么情况下要执行调度程序,我们把这种情况叫做调度时机。

Linux 调度时机主要有。

时机1,进程要调用 sleep() 或 exit() 等函数进行状态转换,这些函数会主动调用调度程序进行进程调度。

时机2,由于进程的时间片是由时钟中断来更新的,因此,这种情况和时机4 是一样的。

时机3,当设备驱动程序执行长而重复的任务时,直接调用调度程序。在每次反复循环中,驱动程序都检查 need_resched 的值,如果必要,则调用调度程序 schedule() 主动放弃 CPU。

时机4 , 如前所述, 不管是从中断、异常还是系统调用返回, 最终都调用 ret_from_sys_call(),由这个函数进行调度标志的检测,如果必要,则调用调用调度程序。那么,为什么从系统调用返回时要调用调度程序呢?这当然是从效率考虑。从系统调用返回意味着要离开内核态而返回到用户态,而状态的转换要花费一定的时间,因此,在返回到用户态前,系统把在内核态该处理的事全部做完。

Linux 的调度程序是一个叫 Schedule() 的函数,这个函数来决定是否要进行进程的切换,如果要切换的话,切换到哪个进程等。

从代码分析来看,Schedule 主要完成了2个功能:

进程上下文切换包括进程的地址空间的切换和执行环境的切换。

对于 switch_mm 处理,关键的一步就是它将新进程页面目录的起始物理地址装入到寄存器 CR3 中。CR3 寄存器总是指向当前进程的页面目录。

switch_to 把寄存器中的值比如esp等存放到进程thread结构中,保存现场一边后续恢复,同时调用 __switch_to 完成了堆栈的切换。

在进程的 task_struct 结构中有个重要的成分 thread,它本身是一个数据结构 thread_struct, 里面记录着进程在切换时的(系统空间)堆栈指针,取指令地址(也就是“返回地址”)等关键性的信息。

关于__switch_to 的工作就是处理 TSS (任务状态段)。

TSS 全称task state segment,是指在 *** 作系统进程管理的过程中,任务(进程)切换时的任务现场信息。

linux 为每一个 CPU 提供一个 TSS 段,并且在 TR 寄存器中保存该段。

linux 中之所以为每一个 CPU 提供一个 TSS 段,而不是为每个进程提供一个TSS 段,主要原因是 TR 寄存器永远指向它,在任务切换的适合不必切换 TR 寄存器,从而减小开销。

在从用户态切换到内核态时,可以通过获取 TSS 段中的 esp0 来获取当前进程的内核栈 栈顶指针,从而可以保存用户态的 cs,esp,eip 等上下文。

TSS 在任务切换过程中起着重要作用,通过它实现任务的挂起和恢复。所谓任务切换是指,挂起当前正在执行的任务,恢复或启动另一任务的执行。

在任务切换过程中,首先,处理器中各寄存器的当前值被自动保存到 TR(任务寄存器)所指定的任务的 TSS 中;然后,下一任务的 TSS 被装入 TR;最后,从 TR 所指定的 TSS 中取出各寄存器的值送到处理器的各寄存器中。由此可见,通过在 TSS 中保存任务现场各寄存器状态的完整映象,实现任务的切换。

因此,__switch_to 核心内容就是将 TSS 中的内核空间(0级)堆栈指针换成 next->esp0。这是因为 CPU 在穿越中断门或者陷阱门时要根据新的运行级别从TSS中取得进程在系统空间的堆栈指针。

thread_struct.esp0 指向进程的系统空间堆栈的顶端。当一个进程被调度运行时,内核会将这个变量写入 TSS 的 esp0 字段,表示这个进程进入0级运行时其堆栈的位置。换句话说,进程的 thread_struct 结构中的 esp0 保存着其系统空间堆栈指针。当进程穿过中断门、陷阱门或者调用门进入系统空间时,处理器会从这里恢复期系统空间栈。

由于栈中变量的访问依赖的是段、页、和 esp、ebp 等这些寄存器,所以当段、页、寄存器切换完以后,栈中的变量就可以被访问了。

因此 switch_to 完成了进程堆栈的切换,由于被切进的进程各个寄存器的信息已完成切换,因此 next 进程得以执行指令运行。

由于 A 进程在调用 switch_to 完成了与 B 进程堆栈的切换,也即是寄存器中的值都是 B 的,所以 A 进程在 switch_to 执行完后,A停止运行,B开始运行,当过一段时间又把 A 进程切进去后,A 开始从switch_to 后面的代码开始执行。

schedule 的调用流程如下:

准备好linux编程环境,现场手撕定时器实现【linux服务器开发】

工程师的圣地—Linux内核, 谈谈内核的架构

c/c++ linux服务器开发学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

上图是5个时间轮级联的效果图。中间的大轮是工作轮,只有在它上的任务才会被执行;其他轮上的任务时间到后迁移到下一级轮上,他们最终都会迁移到工作轮上而被调度执行。

多级时间轮的原理也容易理解:就拿时钟做说明,秒针转动一圈分针转动一格;分针转动一圈时针转动一格;同理时间轮也是如此:当低级轮转动一圈时,高一级轮转动一格,同时会将高一级轮上的任务重新分配到低级轮上。从而实现了多级轮级联的效果。

1.1 多级时间轮对象

多级时间轮应该至少包括以下内容:

每一级时间轮对象

轮子上指针的位置

关于轮子上指针的位置有一个比较巧妙的办法:那就是位运算。比如定义一个无符号整型的数:

通过获取当前的系统时间便可以通过位 *** 作转换为时间轮上的时间,通过与实际时间轮上的时间作比较,从而确定时间轮要前进调度的时间,进而 *** 作对应时间轮槽位对应的任务。

为什么至少需要这两个成员呢?

定义多级时间轮,首先需要明确的便是级联的层数,也就是说需要确定有几个时间轮。

轮子上指针位置,就是当前时间轮运行到的位置,它与真实时间的差便是后续时间轮需要调度执行,它们的差值是时间轮运作起来的驱动力。

多级时间轮对象的定义

//实现5级时间轮 范围为0~ (2^8 * 2^6 * 2^6 * 2^6 *2^6)=2^32struct tvec_base{ unsigned long current_indexpthread_t thincrejiffiespthread_t threadIDstruct tvec_root tv1/*第一个轮*/ struct tvec tv2/*第二个轮*/ struct tvec tv3/*第三个轮*/ struct tvec tv4/*第四个轮*/ struct tvec tv5/*第五个轮*/}

1.2 时间轮对象

我们知道每一个轮子实际上都是一个哈希表,上面我们只是实例化了五个轮子的对象,但是五个轮子具体包含什么,有几个槽位等等没有明确(即struct tvec和struct tvec_root)。

#define TVN_BITS 6#define TVR_BITS 8#define TVN_SIZE (1<

此外,每一个时间轮都是哈希表,因此它的类型应该至少包含两个指针域来实现双向链表的功能。这里我们为了方便使用通用的struct list_head的双向链表结构。

1.3 定时任务对象

定时器的主要工作是为了在未来的特定时间完成某项任务,而这个任务经常包含以下内容:

任务的处理逻辑(回调函数)

任务的参数

双向链表节点

到时时间

定时任务对象的定义

typedef void (*timeouthandle)(unsigned long )struct timer_list{ struct list_head entry//将时间连接成链表 unsigned long expires//超时时间 void (*function)(unsigned long)//超时后的处理函数 unsigned long data//处理函数的参数 struct tvec_base *base//指向时间轮}

在时间轮上的效果图:

【文章福利】需要C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,内核,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等)

1.4 双向链表

在时间轮上我们采用双向链表的数据类型。采用双向链表的除了 *** 作上比单链表复杂,多占一个指针域外没有其他不可接收的问题。而多占一个指针域在今天大内存的时代明显不是什么问题。至于双向链表 *** 作的复杂性,我们可以通过使用通用的struct list结构来解决,因为双向链表有众多的标准 *** 作函数,我们可以通过直接引用list.h头文件来使用他们提供的接口。

struct list可以说是一个万能的双向链表 *** 作框架,我们只需要在自定义的结构中定义一个struct list对象即可使用它的标准 *** 作接口。同时它还提供了一个类似container_of的接口,在应用层一般叫做list_entry,因此我们可以很方便的通过struct list成员找到自定义的结构体的起始地址。

关于应用层的log.h, 我将在下面的代码中附上该文件。如果需要内核层的实现,可以直接从linux源码中获取。

1.5 联结方式

多级时间轮效果图:

二. 多级时间轮C语言实现

2.1 双向链表头文件: list.h

提到双向链表,很多的源码工程中都会实现一系列的统一的双向链表 *** 作函数。它们为双向链表封装了统计的接口,使用者只需要在自定义的结构中添加一个struct list_head结构,然后调用它们提供的接口,便可以完成双向链表的所有 *** 作。这些 *** 作一般都在list.h的头文件中实现。Linux源码中也有实现(内核态的实现)。他们实现的方式基本完全一样,只是实现的接口数量和功能上稍有差别。可以说这个list.h文件是学习 *** 作双向链表的不二选择,它几乎实现了所有的 *** 作:增、删、改、查、遍历、替换、清空等等。这里我拼凑了一个源码中的log.h函数,终于凑够了多级时间轮中使用到的接口。

#if !defined(_BLKID_LIST_H) &&!defined(LIST_HEAD)#define _BLKID_LIST_H#ifdef __cplusplus extern "C" {#endif/* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */struct list_head { struct list_head *next, *prev}#define LIST_HEAD_INIT(name) { &(name), &(name) }#define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name)#define INIT_LIST_HEAD(ptr) do { \ (ptr)->next = (ptr)(ptr)->prev = (ptr)\} while (0)static inline void__list_add(struct list_head *entry, struct list_head *prev, struct list_head *next){ next->prev = entryentry->next = nextentry->prev = prevprev->next = entry}/** * Insert a new element after the given list head. The new element does not * need to be initialised as empty list. * The list changes from: * head → some element → ... * to * head → new element → older element → ... * * Example: * struct foo *newfoo = malloc(...)* list_add(&newfoo->entry, &bar->list_of_foos)* * @param entry The new element to prepend to the list. * @param head The existing list. */static inline voidlist_add(struct list_head *entry, struct list_head *head){ __list_add(entry, head, head->next)}/** * Append a new element to the end of the list given with this list head. * * The list changes from: * head → some element → ... → lastelement * to * head → some element → ... → lastelement → new element * * Example: * struct foo *newfoo = malloc(...)* list_add_tail(&newfoo->entry, &bar->list_of_foos)* * @param entry The new element to prepend to the list. * @param head The existing list. */static inline voidlist_add_tail(struct list_head *entry, struct list_head *head){ __list_add(entry, head->prev, head)}static inline void__list_del(struct list_head *prev, struct list_head *next){ next->prev = prevprev->next = next}/** * Remove the element from the list it is in. Using this function will reset * the pointers to/from this element so it is removed from the list. It does * NOT free the element itself or manipulate it otherwise. * * Using list_del on a pure list head (like in the example at the top of * this file) will NOT remove the first element from * the list but rather reset the list as empty list. * * Example: * list_del(&foo->entry)* * @param entry The element to remove. */static inline voidlist_del(struct list_head *entry){ __list_del(entry->prev, entry->next)}static inline voidlist_del_init(struct list_head *entry){ __list_del(entry->prev, entry->next)INIT_LIST_HEAD(entry)}static inline void list_move_tail(struct list_head *list, struct list_head *head){ __list_del(list->prev, list->next)list_add_tail(list, head)}/** * Check if the list is empty. * * Example: * list_empty(&bar->list_of_foos)* * @return True if the list contains one or more elements or False otherwise. */static inline intlist_empty(struct list_head *head){ return head->next == head}/** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */static inline void list_replace(struct list_head *old, struct list_head *new){ new->next = old->nextnew->next->prev = newnew->prev = old->prevnew->prev->next = new}/** * Retrieve the first list entry for the given list pointer. * * Example: * struct foo *first* first = list_first_entry(&bar->list_of_foos, struct foo, list_of_foos)* * @param ptr The list head * @param type Data type of the list element to retrieve * @param member Member name of the struct list_head field in the list element. * @return A pointer to the first list element. */#define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member)static inline void list_replace_init(struct list_head *old, struct list_head *new){ list_replace(old, new)INIT_LIST_HEAD(old)}/** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. */#define list_entry(ptr, type, member) \ ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))/** * list_for_each - iterate over elements in a list * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */#define list_for_each(pos, head) \ for (pos = (head)->nextpos != (head)pos = pos->next)/** * list_for_each_safe - iterate over elements in a list, but don't dereference * pos after the body is done (in case it is freed) * @pos: the &struct list_head to use as a loop counter. * @pnext: the &struct list_head to use as a pointer to the next item. * @head: the head for your list (not included in iteration). */#define list_for_each_safe(pos, pnext, head) \ for (pos = (head)->next, pnext = pos->nextpos != (head)\ pos = pnext, pnext = pos->next)#ifdef __cplusplus}#endif#endif /* _BLKID_LIST_H */

这里面一般会用到一个重要实现:container_of, 它的原理这里不叙述

2.2 调试信息头文件: log.h

这个头文件实际上不是必须的,我只是用它来添加调试信息(代码中的errlog(), log()都是log.h中的宏函数)。它的效果是给打印的信息加上颜色,效果如下:

log.h的代码如下:

#ifndef _LOG_h_#define _LOG_h_#include #define COL(x) "\033[" #x "m"#define RED COL(31)#define GREEN COL(32)#define YELLOW COL(33)#define BLUE COL(34)#define MAGENTA COL(35)#define CYAN COL(36)#define WHITE COL(0)#define GRAY "\033[0m"#define errlog(fmt, arg...) do{ \ printf(RED"[#ERROR: Toeny Sun:"GRAY YELLOW" %s:%d]:"GRAY WHITE fmt GRAY, __func__, __LINE__, ##arg)\}while(0)#define log(fmt, arg...) do{ \ printf(WHITE"[#DEBUG: Toeny Sun: "GRAY YELLOW"%s:%d]:"GRAY WHITE fmt GRAY, __func__, __LINE__, ##arg)\}while(0)#endif

2.3 时间轮代码: timewheel.c

/* *毫秒定时器 采用多级时间轮方式 借鉴linux内核中的实现 *支持的范围为1 ~ 2^32 毫秒(大约有49天) *若设置的定时器超过最大值 则按最大值设置定时器 **/#include #include #include #include #include #include #include "list.h"#include "log.h" #define TVN_BITS 6#define TVR_BITS 8#define TVN_SIZE (1<current_index >>(TVR_BITS + (N) * TVN_BITS)) &TVN_MASK) typedef void (*timeouthandle)(unsigned long )struct timer_list{ struct list_head entry//将时间连接成链表 unsigned long expires//超时时间 void (*function)(unsigned long)//超时后的处理函数 unsigned long data//处理函数的参数 struct tvec_base *base//指向时间轮}struct tvec { struct list_head vec[TVN_SIZE]}struct tvec_root{ struct list_head vec[TVR_SIZE]}//实现5级时间轮 范围为0~ (2^8 * 2^6 * 2^6 * 2^6 *2^6)=2^32struct tvec_base{ unsigned long current_indexpthread_t thincrejiffiespthread_t threadIDstruct tvec_root tv1/*第一个轮*/ struct tvec tv2/*第二个轮*/ struct tvec tv3/*第三个轮*/ struct tvec tv4/*第四个轮*/ struct tvec tv5/*第五个轮*/}static void internal_add_timer(struct tvec_base *base, struct timer_list *timer){ struct list_head *vecunsigned long expires = timer->expiresunsigned long idx = expires - base->current_index#if 1 if( (signed long)idx <0 ) /*这里是没有办法区分出是过时还是超长定时的吧?*/ { vec = base->tv1.vec + (base->current_index &TVR_MASK)/*放到第一个轮的当前槽*/ } else if ( idx <TVR_SIZE ) /*第一个轮*/ { int i = expires &TVR_MASKvec = base->tv1.vec + i} else if( idx <1 <<(TVR_BITS + TVN_BITS) )/*第二个轮*/ { int i = (expires >>TVR_BITS) &TVN_MASKvec = base->tv2.vec + i} else if( idx <1 <<(TVR_BITS + 2 * TVN_BITS) )/*第三个轮*/ { int i = (expires >>(TVR_BITS + TVN_BITS)) &TVN_MASKvec = base->tv3.vec + i} else if( idx <1 <<(TVR_BITS + 3 * TVN_BITS) )/*第四个轮*/ { int i = (expires >>(TVR_BITS + 2 * TVN_BITS)) &TVN_MASKvec = base->tv4.vec + i} else /*第五个轮*/ { int iif (idx >0xffffffffUL) { idx = 0xffffffffULexpires = idx + base->current_index} i = (expires >>(TVR_BITS + 3 * TVN_BITS)) &TVN_MASKvec = base->tv5.vec + i}#else /*上面可以优化吧*/#endif list_add_tail(&timer->entry, vec)} static inline void detach_timer(struct timer_list *timer){ struct list_head *entry = &timer->entry__list_del(entry->prev, entry->next)entry->next = NULLentry->prev = NULL} static int __mod_timer(struct timer_list *timer, unsigned long expires){ if(NULL != timer->entry.next) detach_timer(timer)internal_add_timer(timer->base, timer)return 0} //修改定时器的超时时间外部接口int mod_timer(void *ptimer, unsigned long expires){ struct timer_list *timer = (struct timer_list *)ptimerstruct tvec_base *basebase = timer->baseif(NULL == base) return -1expires = expires + base->current_indexif(timer->entry.next != NULL &&timer->expires == expires) return 0if( NULL == timer->function ) { errlog("timer's timeout function is null\n")return -1} timer->expires = expiresreturn __mod_timer(timer,expires)} //添加一个定时器static void __ti_add_timer(struct timer_list *timer){ if( NULL != timer->entry.next ) { errlog("timer is already exist\n")return} mod_timer(timer, timer->expires)} /*添加一个定时器 外部接口 *返回定时器 */void* ti_add_timer(void *ptimewheel, unsigned long expires,timeouthandle phandle, unsigned long arg){ struct timer_list *ptimerptimer = (struct timer_list *)malloc( sizeof(struct timer_list) )if(NULL == ptimer) return NULLbzero( ptimer,sizeof(struct timer_list) )ptimer->entry.next = NULLptimer->base = (struct tvec_base *)ptimewheelptimer->expires = expiresptimer->function = phandleptimer->data = arg__ti_add_timer(ptimer)return ptimer} /* *删除一个定时器 外部接口 * * */void ti_del_timer(void *p){ struct timer_list *ptimer =(struct timer_list*)pif(NULL == ptimer) returnif(NULL != ptimer->entry.next) detach_timer(ptimer)free(ptimer)}/*时间轮级联*/ static int cascade(struct tvec_base *base, struct tvec *tv, int index){ struct list_head *pos,*tmpstruct timer_list *timerstruct list_head tv_list/*将tv[index]槽位上的所有任务转移给tv_list,然后清空tv[index]*/ list_replace_init(tv->vec + index, &tv_list)/*用tv_list替换tv->vec + index*/ list_for_each_safe(pos, tmp, &tv_list)/*遍历tv_list双向链表,将任务重新添加到时间轮*/ { timer = list_entry(pos,struct timer_list,entry)/*struct timer_list中成员entry的地址是pos, 获取struct timer_list的首地址*/ internal_add_timer(base, timer)} return index} static void *deal_function_timeout(void *base){ struct timer_list *timerint retstruct timeval tvstruct tvec_base *ba = (struct tvec_base *)basefor() { gettimeofday(&tv, NULL)while( ba->current_index <= (tv.tv_sec*1000 + tv.tv_usec/1000) )/*单位:ms*/ { struct list_head work_listint index = ba->current_index &TVR_MASK/*获取第一个轮上的指针位置*/ struct list_head *head = &work_list/*指针指向0槽时,级联轮需要更新任务列表*/ if(!index &&(!cascade(ba, &ba->tv2, INDEX(0))) &&( !cascade(ba, &ba->tv3, INDEX(1))) &&(!cascade(ba, &ba->tv4, INDEX(2))) ) cascade(ba, &ba->tv5, INDEX(3))ba->current_index ++list_replace_init(ba->tv1.vec + index, &work_list)while(!list_empty(head)) { void (*fn)(unsigned long)unsigned long datatimer = list_first_entry(head, struct timer_list, entry)fn = timer->functiondata = timer->datadetach_timer(timer)(*fn)(data)} } }} static void init_tvr_list(struct tvec_root * tvr){ int ifor( i = 0ivec[i])} static void init_tvn_list(struct tvec * tvn){ int ifor( i = 0ivec[i])} //创建时间轮 外部接口void *ti_timewheel_create(void ){ struct tvec_base *baseint ret = 0struct timeval tvbase = (struct tvec_base *) malloc( sizeof(struct tvec_base) )if( NULL==base ) return NULLbzero( base,sizeof(struct tvec_base) )init_tvr_list(&base->tv1)init_tvn_list(&base->tv2)init_tvn_list(&base->tv3)init_tvn_list(&base->tv4)init_tvn_list(&base->tv5)gettimeofday(&tv, NULL)base->current_index = tv.tv_sec*1000 + tv.tv_usec/1000/*当前时间毫秒数*/ if( 0 != pthread_create(&base->threadID,NULL,deal_function_timeout,base) ) { free(base)return NULL} return base} static void ti_release_tvr(struct tvec_root *pvr){ int istruct list_head *pos,*tmpstruct timer_list *penfor(i = 0i <TVR_SIZEi++) { list_for_each_safe(pos,tmp,&pvr->vec[i]) { pen = list_entry(pos,struct timer_list, entry)list_del(pos)free(pen)} }} static void ti_release_tvn(struct tvec *pvn){ int istruct list_head *pos,*tmpstruct timer_list *penfor(i = 0i <TVN_SIZEi++) { list_for_each_safe(pos,tmp,&pvn->vec[i]) { pen = list_entry(pos,struct timer_list, entry)list_del(pos)free(pen)} }} /* *释放时间轮 外部接口 * */void ti_timewheel_release(void * pwheel){ struct tvec_base *base = (struct tvec_base *)pwheelif(NULL == base) returnti_release_tvr(&base->tv1)ti_release_tvn(&base->tv2)ti_release_tvn(&base->tv3)ti_release_tvn(&base->tv4)ti_release_tvn(&base->tv5)free(pwheel)} /************demo****************/struct request_para{ void *timerint val}void mytimer(unsigned long arg){ struct request_para *para = (struct request_para *)arglog("%d\n",para->val)mod_timer(para->timer,3000)//进行再次启动定时器 sleep(10)/*定时器依然被阻塞*/ //定时器资源的释放是在这里完成的 //ti_del_timer(para->timer)} int main(int argc,char *argv[]){ void *pwheel = NULLvoid *timer = NULLstruct request_para *parapara = (struct request_para *)malloc( sizeof(struct request_para) )if(NULL == para) return 0bzero(para,sizeof(struct request_para))//创建一个时间轮 pwheel = ti_timewheel_create()if(NULL == pwheel) return -1//添加一个定时器 para->val = 100para->timer = ti_add_timer(pwheel, 3000, &mytimer, (unsigned long)para)while(1) { sleep(2)} //释放时间轮 ti_timewheel_release(pwheel)return 0}

2.4 编译运行

toney@ubantu:/mnt/hgfs/em嵌入式学习记录/4. timerwheel/2. 多级时间轮$ lsa.out list.h log.h mutiTimeWheel.ctoney@ubantu:/mnt/hgfs/em嵌入式学习记录/4. timerwheel/2. 多级时间轮$ gcc mutiTimeWheel.c -lpthreadtoney@ubantu:/mnt/hgfs/em嵌入式学习记录/4. timerwheel/2. 多级时间轮$ ./a.out [#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100[#DEBUG: Toeny Sun: mytimer:370]:100

从结果可以看出:如果添加的定时任务是比较耗时的 *** 作,那么后续的任务也会被阻塞,可能一直到超时,甚至一直阻塞下去,这个取决于当前任务是否耗时。这个理论上是绝不能接受的:一个任务不应该也不能去影响其他的任务吧。但是目前没有对此问题进行改进和完善,以后有机会再继续完善吧。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/9012244.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-23
下一篇 2023-04-23

发表评论

登录后才能评论

评论列表(0条)

保存