AS3527有一个模拟部分,称作AFE,其与数字部分通过i2c通信,此处AFE部分有很多寄存器供外界 *** 作访问,如果想要访问这些寄存器,就要用到Sub Address,所以,要实现让i2c 驱动支持Sub Address的模式。
i2C本身的架构中,没有支持sub address,所以,我们只能想办法,让其I2C支持(方法1)或者用smbus的架构(方法2).
【方法】
方法1:
在i2c的message中传递一个2个字节的buffer,分别存放Sub Address和data
比如,对于读 *** 作,就可以这么实现:
int afe_read_reg(int addr, u8 *pdata)
{
u8 msgbuf[2]
struct i2c_msg msg =
{
.addr = save_client->addr | ( <<8),
.flags = I2C_M_RD ,
.len = 2,
.buf = msgbuf,
}
msgbuf[0] = addr//存放Sub Address,此处的Addr是寄存器地址,也就是Sub Address
msgbuf[1] = 0//初始化
if (i2c_transfer(save_client->adapter, &msg, 1) <0) {
dev_warn(&save_client->dev,
"can't read from afe /n")
return -ENOMEM
}
*pdata = msgbuf[1]
return 0
}
方法2:
使用SMBUS的框架,其支持Sub Address
在i2c读 *** 作中,直接调用SMBUS架构中的函数i2c_smbus_read_byte_data:
int afe_read_reg(int addr, u8 *pdata)
{
int ret
ret = i2c_smbus_read_byte_data(save_client, addr)
if (ret <0)
return ret
else {
*pdata = (u8)ret
return 0
}
}
然后函数调用顺序是
i2c_smbus_read_byte_data ->i2c_smbus_xfer ->
adapter->algo->smbus_xfer 或 i2c_smbus_xfer_emulated
(1)此处如果你自己的I2C驱动中没有实现
adapter->algo->smbus_xfer
那么就会去调用i2c_smbus_xfer_emulated,其会把I2C的读一个字节的 *** 作,
分成2个message,然后
i2c_smbus_xfer_emulated ->i2c_transfer ->adap->algo->master_xfer(adap,msgs,num)
去调用底层自己的i2c传输的函数master_xfer去实现两个message的传输。
此处要注意的是,如果你的i2C的控制器和i2c设备,支持将此I2C的读一个字节 *** 作分两个message传输,
那么此处此方法也是可以的。
而你的底层的master_xfer函数,只要负责将对应的message发送出去也就可以实现对应的功能了。
否则,就像我此处遇到的,我这里的AFE的i2c控制器,不支持读 *** 作分成两次message,只支持一个I2C message的传输,
所以,只能是在底层特殊处理,将2个message自己整理成一个message,或者是用下面的办法。
(2)自己实现了adapter->algo->smbus_xfer
自己仿照i2c_smbus_xfer_emulated,在具体实现的时候,对于读和写都只是发送一个message,然后让底层代码
adap->algo->master_xfer去处理这个message,实现对应的读和写。
【注意】
1.以上,不论是1还是2,都是在实现了自己I2C驱动底层message传输的基本函数之后,才可以工作的。
而对于这个基本函数,即adap->algo->master_xfer,
都是要在实现的时候,注意上层传递过来的buffer的第一个字节是sub address,第二个字节才是要用于写入或读取的buffer。
2.对于方法2(2),在模拟i2c_smbus_xfer_emulated实现自己的xfer函数的时候,
不能直接调用i2c_transfer,因为i2c_transfer里面,去获得adapter->bus_lock,而i2c_smbus_xfer中,调用adapter->algo->smbus_xfer之前,已经进行了对于adapter->bus_lock锁定,而因此会形成死锁的的,办法是不要再去获得锁,而直接调用adapter->algo->master_xfer即可。
利用Linux中IIC设备子系统移植IIC设备驱动背景描述
IIC总线在嵌入式系统中应用十分广泛,常见的有eeprom,rtc。一般的处理器会包含IIC的控制器,用来完成IIC时序的控制;另外一方面,由于IIC的时序简单,使用GPIO口来模拟时序也是常见的做法。面对不同的IIC控制器,各种各样的芯片以及linux源码,如何更快做好IIC设备驱动。
问题描述
在我们的方案中,我们会用到eeprom,rtc以及tw2865。由于Hi3520的IIC控制器设计有问题,无法正常使用。而IIC控制器的SDA和SCL管脚正好是和两个GPIO管脚复用的。Hisi将控制gpio来实现IIC的时序,从而对IIC设备进行 *** 作。这种设计方式简单明了,但使用IIC子系统,可以更方便的移植和维护其他的设备驱动。
问题分析
Hisi对于gpio口,rtc芯片以及tw2865的处理方式如下:将gpio口做成一个模块化的驱动,该驱动模拟IIC时序,并向外提供一些函数接口,比如:EXPORT_SYMBOL(gpio_i2c_read_tw2815)等。对于具体的rtc芯片,将其注册为一个misc设备,并利用gpio模块导出的函数进行rtc芯片的配置 *** 作。
其实对于linux-2.6.24\drivers\i2c目录下代码,我们可以加以利用。
Linux的IIC字结构分为三个组成部分:
IIC核心
IIC核心提供了IIC总线驱动和设备驱动的注册、注销方法,IICalgorithm上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码。
IIC总线驱动
IIC总线驱动是对IIC硬件体系结构中适配器端的实现。
IIC设备驱动
IIC设备驱动是对IIC硬件体系总设备端的实现。
我们查看下该目录下的makefile和kconfig:
obj-$(CONFIG_I2C_BOARDINFO) +=i2c-boardinfo.o
obj-$(CONFIG_I2C) += i2c-core.o
obj-$(CONFIG_I2C_CHARDEV) +=i2c-dev.o
obj-y +=busses/ chips/ algos/
i2c-core.c就是IIC核心,buses中的文件是主流处理器中IIC总线的总线驱动,而chips中的文件就是常用芯片的驱动,algos中的文件实现了一些总线适配器的algorithm,其中就包括我们要用到的i2c-algo-bit.c文件。
我们首先利用i2c-gpio.c和i2c-algo-bit.c做好总线驱动。
在i2c-gpio.c中,module_initi2c_gpio_initplatform_driver_probe(&i2c_gpio_driver,i2c_gpio_probe)
将其注册为platform虚拟总线的驱动。
在staticint __init i2c_gpio_probe(struct platform_device *pdev)中,
定义了如下三个结构体:
structi2c_gpio_platform_data *pdata//平台相关的gpio的设置
structi2c_algo_bit_data *bit_data//包含algorithm的具体函数,setor
get SDA和SCL
structi2c_adapter *adap//适配器
i2c_gpio_probe主要做了下面几件事:
填充bit_data结构的各个函数指针,关联到具体的 *** 作SDA和SCl函数。
填充adap结构,adap->algo_data= bit_data
pdata= pdev->dev.platform_data
bit_data->data= pdata
pdev->dev->driver_data= adap
在i2c-core中注册适配器类型。
inti2c_bit_add_numbered_bus(struct i2c_adapter *adap)
在staticint i2c_bit_prepare_bus(struct i2c_adapter *adap)中
adap->algo= &i2c_bit_algo
将i2c_bit_algo与adap关联上。
static const structi2c_algorithm i2c_bit_algo = {
.master_xfer = bit_xfer,
.functionality = bit_func,
}
其中,master_xfer函数指针就是IIC传输函数指针。
I2c-algo-bit.c还实现了IIC开始条件,结束条件的模拟,发送字节,接收字节以及应答位的处理。
i2c-gpio.c中的i2c_gpio_setsda_val等函数是与具体平台gpio相关的。
修改对应arch-hi3520v100目录下的gpio.h中的各个函数,这些函数是通过 *** 作寄存器来控制gpio的方向和值。
在对应mach-hi3520v100中的platform-devices.c中添加如下:
static structi2c_gpio_platform_data pdata = {
.sda_pin = 1<<0,
.sda_is_open_drain = 1,
.scl_pin = 1<<1,
.scl_is_open_drain = 1,
.udelay = 4, /* ~100 kHz */
}
static struct platform_devicehisilicon_i2c_gpio_device = {
.name = "i2c-gpio",
.id = -1,
.dev.platform_data = &pdata,
}
static struct platform_device*hisilicon_plat_devs[] __initdata = {
&hisilicon_i2c_gpio_device,
}
int __inithisilicon_register_platform_devices(void)
{
platform_add_devices(hisilicon_plat_devs,ARRAY_SIZE (hisilicon_plat_devs))
return 0
}
通过platform添加devices和driver,使得pdev->dev.platform_data=pdata
综合上面的过程,我们完成了adapter的注册,并将用gpio口模拟的algorithm与adapter完成了关联。
这样,在rtc-x1205.c中,x1205_attach函数利用i2c核心完成client和adap的关联。
在x1205_probe函数中填充i2c_client结构体,并调用i2c_attach_client通知iic核心。
接着注册rtc驱动。
最后我们要读取时间,就需要构造i2c_msg结构体,如下所示:
struct i2c_msg msgs[] = {
{ client->addr, 0, 2,dt_addr }, /* setup read ptr */
{ client->addr, I2C_M_RD,8, buf }, /* read date */
}
/* read date registers */
if((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
dev_err(&client->dev,"%s: read error\n", __FUNCTION__)
return -EIO
}
dt_addr是寄存器的地址,I2C_M_RD表示iicread。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)