光纤传输系统的优势是什么?

光纤传输系统的优势是什么?,第1张

光纤传输系统的优势:

①当利用光纤传输系统进行长距离的传输的时候,同传统的电缆和电线相比,其画面的清晰度和保真度是非常突出的。

②光纤是一种绝缘体,雷击和电磁辐射等多种电气干扰对其是没有影响的,同时,同电力线或者是高压设备进行接触的过程中是不会出现相应问题的。

③在光纤传输的过程中,横条干扰、接地回路和图像撕扯等问题是不存在的,在此情况下,为传输的安全性提供了重要的保障,同时,当有人窃听的时候是非常容易发现的。

④天气因素对于光纤传输来说是几乎不产生影响的,正是因为如此,可以对光缆进行充分的应用,能够将其架设到外面,而且也能够将其铺设在地面上。与此同时,光纤被腐蚀的可能性是非常小的,因此,对于光缆的玻璃纤维来说,相关的化学用品是不会对其造成非常严重的影响的。

⑤对于多模和单模的光纤来说,相比于同轴的电缆,光缆的质量是非常轻的,同时,当对其进行应用的过程中,是不需要对放大镜进行相应的应用的,因此,在对设备进行维护的时候, *** 作起来是非常简单的,在远距离的信息传输中可以进行充分的应用。

扩展资料:

光纤传输系统技术是光传输技术的一种(主要是指具有单色性,方向性和相干性的激光传输,最初是空间传输,70年代开始光纤传输),光纤传输优点是频段高:10G Hz理论上能大容量。

在传输方面,掺铒光纤放大器、波分复用和光纤色散补偿技术是建立全光通信网的核心技术。光纤在155um窗口有一较宽的低损耗带宽(30THZ),可以容纳密集波分复用(DWDM)的光信号同时在一条光纤上传输,这样的多路传输系统是可以扩展的,经济合理。155um掺铒光纤放大器(EDFA)能在较宽波段提供同等增益,它与波分复用和光纤色散补偿技术结合,成为挖掘光纤潜在带宽容量的最好办法。

虽然DWDM和EDFA的结合堪称通信领域的最完美的联姻,但是系统只提供了原始的传输带宽,只有再加上灵活的节点才能实现高效的灵活的组网能力。然而现有的电交叉连接(DXC)系统十分复杂,其系统开发和改进的速度要慢于半导体芯片性能改进的摩尔定律,从发展看是无法跟上网络传输链路容量每9个月翻番的增长速度的。于是业界的注意力开始转向光节点,即光分插复用器(OADM)和光交叉连接器(OXC),靠光层面上的波长连接来解决节点的容量扩展问题,即能直接在光路上对不同波长的信号实现上下和交叉连接功能。

光纤通信技术已渗透到了电信网的接人网、本地网(接人中继网)和长途干线网(骨干网)之中。由于价格和用户所需带宽的问题短时间内完全实现全部光纤接人到户还不现实但是长远来看,实现全部光纤入户是社会发展的必然性,而同时对光网络工程师的人才需求也将越来越大。在这些典型的网络应用中,光纤只用来代替各类电缆,主要用做传输媒质连接业务节点,即实现了节点之间链路传输的光信号格式化,而节点对信号的处理、队列和交换等还是采用电子技术这类网络称为第一代光网络,即光电混合网典型的第一代光网络有SONET(同步光网络)和SDH(同步数字体系)还有各类企业网如光纤分布数据接口(FDDI)等当数据速率越来越高时采用电子技术处理交换节点的数据速率是相当困难的。考虑到节点处理的数据不仅有到达自身的,还有通过该节点到达其他节点的,如果到达其他节点的数据能在光域选路,则电子技术处理的数据速率就下降了,其负担就小得多了,这使得第二代光网络即全光网络诞生了。第二代光网络以在光域完成节点数据的选路与交换为标志实现了节点的部分光化。第二代光网络中的代表技术包括波分复用(WDM)、光时分复用(OTDM)和光码分复(OCDMA)等。

光通信大意是通过介质,借光折点和光波的不同传送信息

光纤通信是利用光纤这种介质进行通信

数字通信通俗的理解好像就是010100110这两个数字吧,

但是正确的定义应该比较接近通过比特流传输数据

光通信是一种以光波为传输媒质的通信方式。光波和无线电波同属电磁波,但光波的频率比无线电波的频率高,波长比无线电波的波长短。因此,它具有传输频带宽、通信容量大和抗电磁干扰能力强等优点。  

光纤通信

是一种有线通信,光波沿光导纤维传输。光源可以是激光器(又称半导体激光二极管),也可以是发光二极管。光纤通信传输衰减小、容量大、不受外界干扰、保密性好,可用于大容量国防干线通信和野战通信等。

最早的光通信可追溯到中国古代的利用火光传递信息的烽火台通信,它是一种利用普通光的视觉光通信。烽火台通信的改进是利用不同颜色的烽烟组合来传递更复杂的信息。现在还在一些特殊场合使用的旗语通信也属于视觉通信的范畴。但这些通信方式都存在传输信息量太小的缺点,都不能称为现代意义的光通信。

现代意义上的光通信可追溯到1881年贝尔发明的“光电话”,但因为既没有可靠的高强度光源,也没有稳定低损耗的传输媒介,光通信的发展受到极大限制,这种情况一直持续到20世纪60年代。1960年,世界上的第一台红宝石激光器诞生;1970年,美国贝尔实验室研制成功了半导体激光器;1966年,华裔科学家高锟博士提出了石英玻璃光纤可用于光通信的理论研究,并因此在2009年获得了诺贝尔奖;1970年,美国康宁公司研制出了世界上第一根低损耗石英光纤。光源、传输媒介这两个制约光通信发展的最主要问题相继得以解决后,光通信也取得了飞跃式、革命性的进步。

目前,随着光通信的新理论、新技术、新设备和新应用的不断发展,光通信系统更是成为国家乃至全球最重要的信息基础设施。

现在,通讯网络已经成为我们生活工作的重要组成部分,随着科技的不断进步,网络传播的媒介已经成为了光纤,光纤宽带相关的设备也特别多,例如光纤跳线、光纤接续盒、光纤适配器、ODF光纤配线箱等。那你知道什么是光纤宽带?它又有哪些优势?

光纤宽带就是把要传送的数据由电信号转换为光信号进行通讯,在光纤的两端分别都装有“光猫”进行信号转换,光纤是目前宽带网络中多种传输媒介中最为理想的一种,它的特点是传输容量大,传输质量好,损耗小,中继距离长等,光纤传输使用的是波分复用,即是把小区里的多个用户的数据分别调制成不同波长的光信号在一根光纤里传输。

光纤宽带和ADSL接入方式的区别:

ADSL是一人享用一根电话线上网,在这根电话线里还有你的电话机使用的语音信号。而光纤宽带则是通到小区,然后分别通过超5类网线到各用户,这样上网是上网,打电话是打电话,小区里的用户共享一根光纤足够了。

光纤宽带使用光纤接入网,光纤接入网是指接入网中传输媒介为光纤的接入网。光纤接入网从技术上可分为两大类:有源光网络(AON,Active Optical Network)和无源光网络(PON,Passive Optical Network)。有源光网络又可分为基于SDH的AON和基于PDH的AON;无源光网络可分为窄带PON和宽带PON。由于光纤接入网 使用的传输媒介是光纤,因此根据光纤深入用户群的程度,可将光纤接入网分为FTTC(光纤到路边)、FTTZ(光纤到小区)、 FTTB(光纤到大楼)、FTTO(光纤到办公室)和FTTH(光纤到户),它们统称为FTTX。FTTx不是具体的接入技术,而是光纤在接入网中的推进 程度或使用策略。

光纤宽带优势

1光纤宽带速度优势

光纤和宽带的区别,实际上指的是宽带的接入方式,最终直接影响的就是网速。我们知道,最初使用的普通宽带的一般是用铜质的电话线制作的,但是用电话线来传递网络信号,它的速度很慢。与之相比,光纤传输信号的速度就快很多了。

光纤是以光脉冲的形式来传输信号,以玻璃或有机玻璃等为网络传输介质。是一种传输介质,就像双绞线,粗缆,细缆等,它的传输速度要比普通的介质快得多,可以达到每秒前兆以上,比如光纤普通的速度能达到100M,而铜线是很难达到的。

2光纤宽带成本

光纤宽带的优点在于集线器、以太网交换机等组网设备的成本低,用户不需要安装ADSL调制解调器,这是以太网与ADSL竞争的资本。光纤宽带用户投资少、成本价格较便宜。普通宽带应用的ADSL接入,则是利用现有的市内电话网和电话交换局的机房,不能脱离固定电话,受到使用地域限制,同时走电话费也使产品成本增加了。

3 光纤宽带稳定优势

ADSL对线路质量要求一般,当线路质量不好时,会影响稳定性。当传输速率越高,衰减和串扰对信号的影响也越大,有时就会出现网速率下降、掉线的问题。

而光纤宽带的接入采用与电话网不同网络,楼道交换机和小区中心交换机、小区中心交换机和局端交换机之间通过光纤相连,网络稳定性高、可靠性强,更谈不上产生互相影响的问题。

通过上面你应该知道什么光纤宽带了。从上面额描述中,我们也可以知道,光纤宽带的优势真的很多,相信以后光通讯的发展还会越来越明显。

探讨光纤通信传输技术优点和缺点及其在现代通信中的应用论文

 在学习、工作中,大家都经常看到论文的身影吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。相信很多朋友都对写论文感到非常苦恼吧,下面是我为大家整理的探讨光纤通信传输技术优点和缺点及其在现代通信中的应用论文,欢迎阅读与收藏。

 摘要: 随着通信技术的发展, 光纤的诞生使信号传输发生了质的转变, 当今信息时代, 通信网络的复杂程度不断提高, 为现代化通信的发展打下坚实基础。目前通信工程中最广泛的技术就是现代光纤传输技术, 大大的提升了通信传输的可靠性和传输速率。本文通过对现代光纤通信传输技术优点和缺点的分析, 探讨光纤传输技术在现代通信中的应用。

 关键词:光纤通信; 传输技术; 应用;

 一、光纤通信技术

 1、光纤通信传输技术简述。

 光纤通信传输技术是以光纤作为媒介, 具有进行长距离传输、大容量的通信、对环境污染小等优点, 光纤分为通信光纤、感用光纤两种类型, 能够对不同的情况进行整形、分频、调制光波等。在现实应用中, 光纤通信传输技术有更高的光波频率, 与普通的传输方式相比, 光纤有较高的传输质量并且损耗较小。

 2、光纤通信技术的`特点。

 (1) 施工成本低损耗小。随着传输技术水平的提高, 光纤传输的过程不断降低损耗, 光纤通信主要是以石英制成的绝缘体作为材料, 与其他类型的光纤相比具有成本低、损耗小等优点, 施工过程中不用安装回路和接地, 又具有较好的绝缘性, 从而使施工成本大幅降低。

 (2) 容量大。相对于电缆和铜缆的传输, 光纤传输传输中损耗小并且具有更高的带宽, 通过特殊技术手段扩大光纤传输信息量, 实现远距离高效传输。

 (3) 占用空间小。光纤的直径很小, 在施工过程中占据的空间越小, 就能减少施工的任务和后期的检修, 节约光纤维修的时间, 对于通信系统集成化具有非常重要的作用。

 (4) 良好的保密性以及抗干扰能力。石英光纤有较好的绝缘性和抗腐蚀性, 不论是高压线释放的电磁干扰和自然活动中的电磁干扰都具较强的抵抗力, 不会干扰到信号的传输, 在军事方面运用的非常广泛。传统的电波通信容易出现电波泄露的问题, 保密性比较差, 但光纤通信技术却有较强的保密性, 更好的保护传输的内容。

 二、现代光纤通信传输技术的应用

 (1) 单纤双向传输技术。如今, 将现有的双纤双向改用为单纤双向技术, 更有效的节省能源, 降低光纤的消耗, 单纤双向传输技术是在不同的波段中用手法信号调制, 通过技术改进, 更适用于光纤末端设备的接入。

 (2) FTTH接入技术。即光纤到户接入技术, FTTH主要采用PON无源光网络和P2P这两种通信方案进行传输, 具有全光纤、全透明的光接入网方式, 为三网融合进程的不断加快提供了有力支持。为满足消费者对通信技术的需求, 必须要有光纤到户接入技术, 虽然ADSL技术为信息通信领域中的提供良好基础, 但在未来的通信业务中的运用却越来越少, 尤其是在会议电视、网上游戏和HDTV高清数字电视等业务中。

 (3) 在电力通信中的应用。未来电力通信的发展是以内部需求为主。在电网内部;

 一是要降低成本;

 二是要重视通信的重要性,电网外部, 一是要面对市场的变革;

 二是要克服对外界的影响。据此要求, 需要电力通信相关工作人员提升专业水平、加强沟通工作, 保证电力通信的正常运行。

 (4) 光交换技术。光交换技术是光纤传输技术的信息传递过程中通过光信号进行交换, 传统的通信网络是以金属线缆为物理基础, 传输信息数据的线路中是以电子信号的方式存在的, 电子信号是利用电子交换机进行交换, 目前传统的电缆通信网络已经被光纤通信技术替代, 除用户末端部分是采用光纤限号传输, 信息数据是以光信号的形式存在, 但是技术还是电信号交换技术, 由于光开关技术不成熟, 只通将光信号转换为电子信号再变成光信号传输, 这种方式效率低、技术成本高, 因此, 大容量光开关器件的研发对光交换技术的实现提供了支持, 但是由于大容量光交换技术在小颗粒、低速度信号交换中的技术还不成熟, 也可以在小颗粒的信号交换中采用电子交换技术。

 三、光纤通信技术的发展趋势

 (1) 光网络智能化。我国的光纤通信方式主要是以传输为主线, 但是随着计算机技术的快速发展, 计算机技术使网络通信技术得到了更进一步的发展。信息自动发现技术、系统保护恢复功能以及自动连接控制技术更多的运用现代光网络技术, 促进了光网络的智能化发展, 光网络的智能化也是通信领域发展的主要方向。

 (2) 光器件的集成化。为了促进网络通信传输速度的发展, 光器件的集成化是实现全光网络的重要发展方向, 传统的ADSL宽带接入无法满足时下信息传输的需求, 因此必须先完善光器件性能提高信息传输速度, 所以, 为了推动光纤传输技术的发展实现光器件的集成化是必然发展方向。

 (3) 全光网络。全光网络是在信号的交换过程和网络传输的过程中以光的形式存在, 在进出网络时进行电光和光电的转换。传统的光网络系统在网络结点处使用电器件, 在节点间形成全光化, 影响光纤通信干线的总容量, 因此, 实现全光网络是一个重大课题, 为了实现纯粹的全光网络, 必须建立光转换技术和WDM技术提高网络信息传输速度和网络资源的利用率。

 结语:

 光纤通信传输技术已经成为现代社会信息传输的重要技术, 信息通信领域中光纤通信技术的广泛运用, 大容量、高速度、长距离成为了我们追求的主要目标。网络时代的到来, 我们必须尽快了解光纤通信传输技术的现状及优缺点, 促进光纤通信传输技术的发展。

;

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/11669554.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存