神经网络如何用单片机实现?

神经网络如何用单片机实现?,第1张

用单片机开发神经网络应用主要考虑三个方向:

1)网络本身,神网本质上是一组矩阵,矩阵在单片机中的表现可以通过数组来实现;

2)输入输出,神网的应用就是把输入阵列与网络本身的矩阵点乘叉乘后算术求和,产生输出矩阵,把输入输出的算法做到单片机里也不是难事;

3)训练,神网的权值矩阵都是训练出来的,采用诸如前向或反向的算法,可以做离线也可以做在线,如果做离线就没有必要把算法实现在单片机内,PC上就可以做,然后导入矩阵即可;如果做在线则是相对较难的技术,需要在单片机上实现,对于单片机本身的资源要求也较高。

简单说,1)是基础,也最容易;1)+2)就已经是神经网络的应用了,也容易实现;1)+2)+Matlab神经网络离线训练是易于实现,且富有d性的应用方式;1)+2)+在线训练基本上就是具备自己学习能力的机器人,这是学术界一直探索的方向。

希望能给你一些启发,研究神网对我来说已经是五六年前的过去了,还是很怀念那时候的激情,个人认为这将是二十一世纪后期最有影响力的技术之一。

信息领域中的应用:信息处理、模式识别、数据压缩等。

自动化领域:系统辨识、神经控制器、智能检测等。

工程领域:汽车工程、军事工程、化学工程、水利工程等。

在医学中的应用:生物信号的检测与分析、生物活性研究、医学专家系统等。

经济领域的应用:市场价格预测、风险评估等。

此外还有很多应用,比如交通领域的应用,心理学领域的应用等等。神经网络的应用领域是非常广的。

小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。

 即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。

“小波神经网络”的应用:

1、在影像处理方面,可以用于影像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高解析度等。

2、在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等。

3、在工程技术等方面的应用。包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面。

扩展资料:

小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。

小波神经网络具有以下特点:首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。

神经网络的研究可以分为理论研究和应用研究两大方面。

理论研究可分为以下两类:

1、利用神经生理与认知科学研究人类思维以及智能机理。

2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

应用研究可分为以下两类:

1、神经网络的软件模拟和硬件实现的研究。

2、神经网络在各个领域中应用的研究。这些领域主要包括:

模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/11676742.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存