团队的补充 2011-01-17 15:50 1 第三代移动通信(3G)与前两代的主要是提升了传输声音和数据的速度,能够处理图像、音乐、视频流等多种媒体形式,提供包括电话会议、电子商务等多种信息服务
3G系统采用码分多址(CDMA)和分组交换技术。三种主流的技术标准:WCDMA、CDMA2000、TD-SCDMA。主要问题在于:没有一个统一的世界标准;语音不是在IP网络结构上;数据传输达不到速度要求。
国际两大3G标准化组织:3GPP和3GPP2。第三代合作伙伴计划(3rd Generation Partnership Project,即3GPP)成立于1998年12月。成员包括欧洲ETSI、日本ARIB和TTC、中国CCSA、韩国TTA和北美ATIS。3GPP的目标是在ITU的IMT-2000计划范围内制订和实现全球性的(第三代) 移动通信系统规范,致力于WCDMA的发展。第三代合作伙伴计划2(3rd Generation Partnership Project 2,即3GPP2)成立于1998年12月,成员包括:TIA (北美)、CCSA(中国)、ARIB/TTC(日本)和TTA(韩国)。3GPP2其致力于使ITU的 IMT-2000计划中的(3G)移动电话系统规范在全球的发展,它是从2G的CDMA或者IS-95发展而来的CDMA2000标准体系的标准化机构。
WCDMA有Release 99、Release 4、Release 5、Release 6等版本。WCDMA(宽带码分多址)采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为384Mcps,载波带宽为5MHz。基于Release99/Release4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。
HSDPA(高速下行分组接入,High Speed Downlink Packages Access)技术是实现提高WCDMA网络高速下行数据传输速率最为重要的技术,是3GPP在R5协议中为了满足上下行数据业务不对称的需求提出来的,HSDPA是与R99的信道在同一载波上,只是为HSDPA增加了专门的信道,只需要进行软件升级即可。HSDPA下行峰值速率理论最大值可达144Mbps。
HSUPA(高速上行链路分组接入,high speed uplink packet access)。HSUPA通过采用多码传输、HARQ、基于Node B的快速调度等关键技术,使得单小区最大上行数据吞吐率达到576Mbit/s,大大增强了WCDMA上行链路的数据业务承载能力和频谱利用率。HSUPA引入了五条新的物理信道E-DPDCH、E-DPCCH、E-AGCH、E-RGCH、E-HICH和两个新的MAC实体 MAC-e和MAC-es,并把分组调度功能从RNC下移到NodeB,实现了基于NodeB的快速分组调度,并通过混合自动重传HARQ、2ms无线短帧及多码传输等关键技术,使得上行链路的数据吞吐率最高可达到576Mbit/s,大大提高的上行链路数据业务的承载能力。
HSDPA是WCDMA下行链路方向(从无线接入网络到移动终端的方向)针对分组业务的优化和演进。与HSDPA类似,HSUPA是上行链路方向(从移动终端到无线接入网络的方向)针对分组业务的优化和演进。HSUPA是继HSDPA后,WCDMA标准的又一次重要演进。
CDMA2000即CDMA2000 1×EV,1xEV的意思为“Evolution”,表示标准的发展,DO意为Data Only(后来把Data Only改为Data Optimized,表示EV-DO是对CDMA2000 1X网络在提供数据业务方面的一个有效的增强)。CDMA2000 1×EV-DO(Data Only),采用话音分离的信道传输数据。CDMA2000 1×EV-DV(Date and Voice),即数据信道于话音信道合一。CDMA网提供两大类应用,语音和数据。根据应用CDMA2000演进可分为继续提高语音容量,从CDMA2000 1X演进到1X增强版或从CDMA2000 1X标准演进到EV-DO版本0,然后从EV-DO版本0演进到EV-DO版本A以及EV-DO版本B再到EV-DO增强版。
CDMA2000 1X到1X增强版的平滑演进是利用1/8空白速率帧,使用更有效的闭环功控、反向链路提早结束、前向链路提早结束、前向链路干扰抵消(QLIC)、QOF等技术,采用双天线接收的话,则每扇区的容量可达120个同时通话。1X增强版显著增加了语音容量,同时让网络和频谱投资最大化。
从CDMA2000 1X演进到EV-DO版本0,在原有的1X基站上增加一个专门用来做高速数据传输的载频,还需要增加新的PCF(分组控制功能模块)。兼容特性使得1x EV-DO可沿用现有网络的规划及射频部件。1x EV-DO基站还可与CDMA2000 1X的基站合一,并允许用户经由1X的载波使用高质量的话音服务和通过1x EV-DO的载波使用高性能的移动数据业务。
从EV-DO版本0演进到EV-DO版本A,只需对EV-DO版本0网络设备进行软件更新,升级基站中的信道板,基站系统中的其他硬件设备则完全可以保留重用。针对网络的不同情况,EV-DO版本A标准还支持终端在EV-DO版本A和EV-DO版本0网络之间的快速切换。终端和网络的后向兼容性保证了运营商可以逐步向版本A演进,保护了对原版本0网络和终端的投资。由于EV-DO版本A设备已经成熟,可以选择跳过EV-DO版本0而直接从CDMA2000 1X升级为EV-DO版本A。EV-DO版本A到EV-DO版本B,基站和终端之间可以在前反向多个载波上同时传送数据,从而获得更高的峰值传输速率和系统吞吐量。EV-DO版本B可以通过支持多个载频的EV-DO版本A基站进行升级来实现,这需要对基站和基站控制器进行软件更新。EV-DO版本B完全后向兼容EV-DO版本0和EV-DO版本A。EV-DO版本A和EV-DO版本0终端可以无缝接入到EV-DO版本B网络中获取服务。EV-DO版本B网络可以更有效地支持VoIP和可视电话等实时业务。EV-DO增强版完全后向兼容EV-DO版本0、EV-DO版本A和EV-DO版本B。EV-DO版本B、EV-DO版本A和EV-DO版本0的终端可以无缝接入到EV-DO增强版网络中获取服务。
2 在3G之后,第四代(4G)移动通信更先进的技术旨在建立一个新的全IP化的接入网和与固网融合的纯IP核心网,目的是提供宽带移动无线接入
3G向4G的演进路线为:WCDMA和TD-SCDMA,均从HSDPA演进至HSUPA,进而到LTE(3GPP长期演进项目);CDMA2000沿着1xEV-DO0、1xEV-DOA、1xEV-DOB,最终到UMB,超移动宽带(Ultra Mobile Broadband)。
为了适应商用化和技术发展的需要,保证网络运营商的投资,3GPP将WCDMA标准分成了两个大的阶段,它们是:
Release99(R99)版本:1999年12月起,每三个月更新一次,2000年6月版本基本稳定,可供开发。9月份、12月份和2001年3月份版本更加完善;无线接入网络的主要接口Iu、Iub、Iur接口均采用ATM和IP方式,网络是基于ATM的网络;核心网基于演进的GSMMSC和GPRSGSN;电路与分组交换节点逻辑上分开。
Release2000(R00)版本(已改为Release4、5…):主要是引入“全IP网络”,初步提出了基于IP的核心网结构,没有开始实质标准化工作,真正的“全IP”标准预计在2002完成,在网络结构上将实现传输、控制和业务分离,同时IP化也将从核心网(CN)逐步延伸到无线接入网(RAN)和终端(UE)。
R99版本主要标准已经完成,于2000出版,能够提供实现网络和终端的全部基础,包括通用移动通信网络的全部功能基础,提供了商用版本的必要保证,未来的Release4和Release5将在这些功能基础上增加新的功能,保证了标准的延续性。图1所示的实际上就是R99全网的框架,可以看出初期的WCDMA网络可以和GSM网络并存的,由GSM实现广域的全覆盖,而WCDMA实现部分业务密集和高质量业务区的覆盖。这样主要是保证了第二代运营商的投资和平滑过渡。
图1Release99初期网络结构(与GSM共存)
现有的Release99版本WCDMA系统性能和提供的业务主要是:
Release99版本的WCDMA提供了全新的无线接入网络-UTRAN,提高了频谱利用率,高了数据传送能力,数据速率在广域为384kbit/s,小范围慢速移动时为2Mbit/s,支持AMR语音编解码技术,可提高话音质量和系统容量,Iub,Iur和Iu接口基于ATM技术,提供开放的Iub接口;
Release99版本的WCDMA核心网络分为CS域和PS域,其分别基于演进的MSC/GMSC和SGSN/GGSN,CS域主要负责与电路型业务相关的呼叫控制和移动性管理等功能,在呼叫控制:采用TUP,ISUP等标准ISDN信令,移动性管理上采用了进一步演进的MAP协议,物理实体与GSM类似包括了MSC,GMSC,VLR。PS域主要负责与分组型业务相关的会话控制和移动性管理等功能,在原有的GPRS系统基础上对一些接口协议,工作流和和业务功能作部分改动,语音编解码器在核心网实现,支持系统间切换(GSM/UMTS),增强了安全性能和收费系统;
能够提供的主要业务平台包括:基本定位业务,号码可携性业务,智能业务的增强,GSM和UMTS间的切换,可支持所有GSM及其补充业务,例如:无应答的呼叫前转,提供新USIM卡协议,可提高用户的参与性和 *** 作,支持业务的应用编程接口API(开放业务结构),支持多播业务,64kbit/s电路数据承载业务和多媒体业务; 根据前述,我们可以总结WCDMA体制的演进方法是:
-Release99提供了第三代全网解决方案,标准已经成熟,具备蜂窝移动网络的实现基础、基本功能和扩展条件:
–全新的无线接入网络UTRAN
–结合CS和PS域的核心网络
–增强型的GSM核心网络GERAN
-Release4和Release5进一步增加新的业务,优化技术体制和网络结构,是Release99协议的补充和完善,保证了WCDMA体制的延续性:
–全IP网络
–新的无线接入方法-HSDPA
–增强智能网络和安全
楼宇自控系统在不同发展阶段常用通讯协议有Modbus,Lonworks,BACnet等,之前这些通讯协议以传统的总线实现,例如Modbus RTU、Lon FT-10或BACnet MSTP。如今随着现代的IP网络技术的发展,在楼宇中大量综合布线技术,即广泛采用光纤与网线来架构网络,建设网络架构的成本在不断降低,利用全IP网络架构建设楼宇管理系统(BMS)已经成为如今发展的主流趋势,对应网络架构下的通讯协议为Modbus TCP、Lon IP或BACnet IP。
项目设计时,系统集成商可结合楼层、房间平面图和客户的需求即可开展楼宇自控系统的各项规划活动。在一个全IP网络架构的项目中,必然有不少的IP控制器接入其中,此时,管理网络的可靠性对于控制系统起到了至关重要的作用,一旦网络出现故障,设备将无法得到有效控制。
可靠性在楼宇自控系统的重要意义
IP管理网络存在的主要目的是在于使不同地点的控制器能够高效地进行数据传输。如果客户通过电脑管理界面或者触控屏幕点击“开启”钮控制灯光时,一定也期望灯光随之亮起。这一应用场景应当在任何时刻,任何情况下都能够实现。我们将这种期望及设备响应定义为设备的“可靠性”。如果可靠性超过9999%,则其反映在每年53分钟之内的宕机时间。“宕机时间”是指系统出现宕机的一段持续时间。但并不包括例如设备维护这类计划内的停机时间。
这是对于一个子系统而言,如果针对整个楼宇自控系统,那么可靠性是源自于各个子系统可靠性的乘积。假设LOYTEC控制器建立的楼宇自控系统的组合可靠性为997%,则可期待其每年最大停机时间为不超过263小时。又假设底层IP网络的可靠性仅为983%,则其可靠性将为0997x0983=098=98%。图1表示了典型楼宇自控系统中的一个子系统范例架构。
图1 楼宇中的BA系统典型架构
如果连接控制器到中控电脑的网络交换机或者交换机之间的网线发生故障的话,将导致无法实现手动切换灯光。这是中控电脑发送的IP数据包无法转发到灯光控制器的原因。因此,所有网络组件均须视同系统的重要组成部分。下文将介绍如何利用环形网络架构来提高IP网络的可靠性,以提高整个智能楼宇系统的可靠性。
网络拓扑的选择对可靠性的影响
网络拓扑的选择是决定可靠性的另一个重要因素。网络物理拓扑则描述了所有网络元件的选择及其连接方式。常见拓扑结构为星形或线性菊花链,两者均包含单点故障的可能性,故其系统可靠性也会随之降低。例如,构成星形网络中心的交换器失效了,那么连接这交换机的所有设备之间也不能再进行通信,如图2所示。对于线性菊花链拓扑中,一个故障的以太网络端口将会把整个网络剖分成两个子网,连接到不同子网的装置之间的通信也会因此中断,如图3所示。
反之,环形网络则既可承受缆线中断、网络端口或控制装置的故障,而不影响其他控制器在楼宇自控网络中的通讯,如图4所示。基于这项优点,本文将关注的重点也将聚焦于环状拓扑。而能够实现这一网络架构的重要基础是控制器必须支持双网口设计,且双网口可实现交换机的功能。
图4 环形网络单一装置故障对其他设备无影响
智能楼宇系统中环形网络选择和应用
为了减少布线工作量,每个环形网络只应连接位于同一楼层的装置。此外,也应当注意不要将出租区域中不同业主的装置连接在一起,这样设置的目的是当装置发生故障,也只仅有单一业主会受影响而已。因此,每个楼层可能需要安装多个环形网络,如图5所示,是一个三层办公楼的典型环形网络拓扑架构。
图5 三层办公楼的环形拓扑
台达管理型交换器可提供十个网络端口,每个台达LOYTEC控制器都具有双网口,因此可以通过串联方式实现环形网络连接,每层可组成四个环形网络,剩余的两个网络端口,需要根据其楼层设置情况,可以用来进行上、下楼层之间的通信,或连接至楼宇管理网络。
这类环形网络架构保证了在每个楼层内单个控制器的故障不会影响到其他控制器,但实际项目中,交换器或楼层交换机之间的通讯线路也有发生故障的潜在可能。如果其中一台交换机或者楼层间的网线发生故障,则连接在这个交换机下的设备也将因为发生断线而无法再进行正常通信。如图6所示,即显示了在交换器2出现故障时的后果。由于交换器2无法再进行数据传输,因此,第2楼层及第3楼层控制器的数据点也一样无法上传至整个楼宇自控网络。
图6 交换机出现单点故障
针对上述出现的问题,可以采取设置备份交换机的方式来解决,即在同一环形网络中的装置同时连接至两台交换器而非一台,如图7所示。如果使用这种拓扑结构,那么每个楼层上还可以继续建立更多的环形网络。
图7 楼层增加备份交换机
若以每层楼使用两台交换器的方式设置环形网络架构,可以成倍的增加单个楼层的环形网络数量,也提升了整个控制网络的可靠性。图7显示了交换器21发生故障的一个例子。很显然,所有装置仍可通过另一台交换机来实现通讯。
我们进一步讨论需要更高可靠性的场景,例如在楼层间实施网状拓扑。由于更多的端口被预留作为垂直数据传输之用,因此可靠性可以增加,然而布线工作也同时会被增加,不过由于更多的网络端口用于布设网络架构,那么留给控制器的端口数量会相应的减少。然而,最终的好处就是,如果采用这种拓扑形态,可容许每楼层任一台交换机发生故障时,不会影响任何控制器在楼宇网络中的数据通讯,如图8所示。
图8 楼层之间设置网状网络
IP
1是intellectual property的缩写,意思是知识产权(全称为:intellectual property right)。
2是英文 Internet Protocol的缩写,意思是“网络之间互连的协议”,也就是为计算机网络相互连接进行通信而设计的协议。在因特网中,它是能使连接到网上的所有计算机网络实现相互通信的一套规则,规定了计算机在因特网上进行通信时应当遵守的规则。任何厂家生产的计算机系统,只要遵守 IP协议就可以与因特网互连互通。正是因为有了IP协议,因特网才得以迅速发展成为世界上最大的、开放的计算机通信网络。因此,IP协议也可以叫做“因特网协议”。
IP--新一带的年轻人用来只被长辈或老师批评教育,音义为“挨批”!
——IP是怎样实现网络互连的?各个厂家生产的网络系统和设备,如以太网、分组交换网等,它们相互之间不能互通,不能互通的主要原因是因为它们所传送数据的基本单元(技术上称之为“帧”)的格式不同。IP协议实际上是一套由软件程序组成的协议软件,它把各种不同“帧”统一转换成“IP数据报”格式,这种转换是因特网的一个最重要的特点,使所有各种计算机都能在因特网上实现互通,即具有“开放性”的特点。
——那么,“数据报” 是什么?它又有什么特点呢?数据报也是分组交换的一种形式,就是把所传送的数据分段打成 “包”,再传送出去。但是,与传统的“连接型”分组交换不同,它属于“无连接型”,是把打成的每个“包”(分组)都作为一个“独立的报文”传送出去,所以叫做“数据报”。这样,在开始通信之前就不需要先连接好一条电路,各个数据报不一定都通过同一条路径传输,所以叫做“无连接型”。这一特点非常重要,它大大提高了网络的坚固性和安全性。
——每个数据报都有报头和报文这两个部分,报头中有目的地址等必要内容,使每个数据报不经过同样的路径都能准确地到达目的地。在目的地重新组合还原成原来发送的数据。这就要IP具有分组打包和集合组装的功能。
——在实际传送过程中,数据报还要能根据所经过网络规定的分组大小来改变数据报的长度,IP数据报的最大长度可达 65535个字节。
——IP协议中还有一个非常重要的内容,那就是给因特网上的每台计算机和其它设备都规定了一个唯一的地址,叫做“IP 地址”。由于有这种唯一的地址,才保证了用户在连网的计算机上 *** 作时,能够高效而且方便地从千千万万台计算机中选出自己所需的对象来。
——现在电信网正在与 IP网走向融合,以IP为基础的新技术是热门的技术,如用IP网络传送话音的技术(即VoIP)就很热门,其它如IP over ATM、IPover SDH、IP over WDM等等,都是IP技术的研究重点。(IP全球通网)
IPv6是"Internet Protocol Version 6"的缩写,也被称作下一代互联网协议,它是由IETF小组(Internet工程任务组Internet Engineering Task Force)设计的用来替代现行的IPv4(现行的IP)协议的一种新的IP协议。
我们知道,Internet的主机都有一个唯一的IP地址,IP地址用一个32位二进制的数表示一个主机号码,但32位地址资源有限,已经不能满足用户的需求了,因些Internet研究组织发布新的主机标识方法,即IPv6。在RFC1884中(RFC是Request for Comments Document的缩写。RFC实际上就是Internet有关服务的一些标准),规定的标准语法建议把IPv6地址的128位(16个字节)写成8个16位的无符号整数,每个整数用四个十六进制位表示,这些数之间用冒号(:)分开,例如:3ffe:3201:1401:1280:c8ff:fe4d:db39
IPv6相对于现在的IP(即IPv4)有如下特点:
扩展的寻址能力
IPv6将IP地址长度从32位扩展到128位,支持更多级别的地址层次、更多的可寻址节点数以及更简单的地址自动配置。通过在组播地址中增加一个“范围”域提高了多点传送路由的可扩展性。还定义了一种新的地址类型,称为“任意播地址”,用于发送包给一组节点中的任意一个;
简化的报头格式
一些IPv4报头字段被删除或变为了可选项,以减少包处理中例行处理的消耗并限制IPv6报头消耗的带宽;
对扩展报头和选项支持的改进
IP报头选项编码方式的改变可以提高转发效率,使得对选项长度的限制更宽松,且提供了将来引入新的选项的更大的灵活性;
标识流的能力
增加了一种新的能力,使得标识属于发送方要求特别处理(如非默认的服务质量获“实时”服务)的特定通信“流”的包成为可能;
认证和加密能力
IPv6中指定了支持认证、数据完整性和(可选的)数据机密性的扩展功能。
知识产权是指公民、法人或者其他组织在科学技术方面或文化艺术方面,对创造性的劳动所完成的智力成果依法享有的专有权利。
IP(Intellectual Property的简称) 知识产权
知识产权包括工业产权和版权(在我国称为著作权)两部分。工业产权包括专利、商标、服务标志、厂商名称、原产地名称、制止不正当竞争等。版权是法律上规定的某一单位或个人对某项著作享有印刷出版和销售的权利,任何人要复制、翻译、改编或演出等均需要得到版权所有人的许可,否则就是对他人权利的侵权行为。知识产权的实质是把人类的智力成果作为财产来看待。
商标权是指商标主管机关依法授予商标所有人对其注册商标受国家法律保护的专有权。商标是用以区别商品和服务不同来源的商业性标志,由文字、图形、字母、数字、三维标志、颜色组合或者上述要素的组合构成。我国商标权的获得必须履行商标注册程序,而且实行申请在先原则。
著作权是文学、艺术、科学技术作品的原+创作者,依法对其作品所享有的一种民事权利。
专利权与专利保护是指一项发明创造向国家专利局提出专利申请,经依法审查合格后,向专利申请人授予的在规定时间内对该项发明创造享有的专有权。发明创造被授予专利权后,专利权人对该项发明创造拥有独占权,任何单位和个人未经专利权人许可,都不得实施其专利,即不得为生产经营目的制造、使用、许诺销售、销售和进口其专利产品。未经专利权人许可,实施其专利即侵犯其专利权,引起纠纷的,由当事人协商解决;不愿协商或者协商不成的,专利权人或厉害关系人可以向人民法院起诉,也可以请求管理专利工作的部门处理。专利保护采取司法和行政执法“两条途径、平行运作、司法保障”的保护模式。本地区行政保护采取巡回执法和联合执法的专利执法形式,集中力量,重点对群体侵权、反复侵权等严重扰乱专利法治环境的现象加大打击力度。
知识产权的三个特点
1、知识产权的专有性,即独占性或垄断性;
2、知识产权的地域性,即只在所确认和保护的地域内有效;
3、知识产权的时间性,即只在规定期限保护。
IP地址
IP地址是IP网络中数据传输的依据,它标识了IP网络中的一个连接,一台主机可以有多个IP地址。IP分组中的IP地址在网络传输中是保持不变的。
1基本地址格式
现在的IP网络使用32位地址,以点分十进制表示,如1721600。地址格式为:IP地址=网络地址+主机地址 或 IP地址=主机地址+子网地址+主机地址。
网络地址是由Internet权力机构(InterNIC)统一分配的,目的是为了保证网络地址的全球唯一性。主机地址是由各个网络的系统管理员分配。因此,网络地址的唯一性与网络内主机地址的唯一性确保了IP地址的全球唯一性。
2保留地址的分配
根据用途和安全性级别的不同,IP地址还可以大致分为两类:公共地址和私有地址。公用地址在Internet中使用,可以在Internet中随意访问。私有地址只能在内部网络中使用,只有通过代理服务器才能与Internet通信。
一个机构或网络要连入Internet,必须申请公用IP地址。但是考虑到网络安全和内部实验等特殊情况,在IP地址中专门保留了三个区域作为私有地址,其地址范围如下:
10000/8:10000~10255255255
1721600/12:1721600~17231255255
19216800/16:19216800~192168255255
使用保留地址的网络只能在内部进行通信,而不能与其他网络互连。因为本网络中的保留地址同样也可能被其他网络使用,如果进行网络互连,那么寻找路由时就会因为地址的不唯一而出现问题。但是这些使用保留地址的网络可以通过将本网络内的保留地址翻译转换成公共地址的方式实现与外部网络的互连。这也是保证网络安全的重要方法之一。
IP的概念是非常广泛的,包括品牌、商标、版权,还有很重要的就是商业秘密、商业模式、商业标准等。
IP拥有量的多少,是区分制造与创造的最主要标志,一个国家拥有的IP太少,它的产业或者企业在国际分工中就只能扮演初级加工者的角色。
总线制医护对讲系统数据通过系统总线传输,分机、主机之间串联连接。
半数字IP网络医护:分机之间使用总线制串联 ,主机使用IP网络连接
全数字IP网络医护对讲系统:所有设备使用IP网络连接
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)