神经网络:卷积神经网络(CNN)

神经网络:卷积神经网络(CNN),第1张

神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。

粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。

神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。

神经网络有三个要素: 拓扑结构、连接方式、学习规则

神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。

神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题

神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。

根据层次之间的连接方式,分为:

1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络

2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络

根据连接的范围,分为:

1)全连接神经网络:每个单元和相邻层上的所有单元相连

2)局部连接网络:每个单元只和相邻层上的部分单元相连

神经网络的学习

根据学习方法分:

感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练

认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。

根据学习时间分:

离线网络:学习过程和使用过程是独立的

在线网络:学习过程和使用过程是同时进行的

根据学习规则分:

相关学习网络:根据连接间的激活水平改变权系数

纠错学习网络:根据输出单元的外部反馈改变权系数

自组织学习网络:对输入进行自适应地学习

摘自《数学之美》对人工神经网络的通俗理解:

神经网络种类很多,常用的有如下四种:

1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成

2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题

3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接

4)ART网络:自组织网络

深度神经网络:

Convolutional Neural Networks(CNN)卷积神经网络

Recurrent neural Network(RNN)循环神经网络

Deep Belief Networks(DBN)深度信念网络

深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。

深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。

Machine Learning vs Deep Learning 

神经网络(主要是感知器)经常用于 分类

神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。

神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。

神经网络特别适用于下列情况的分类问题:

1) 数据量比较小,缺少足够的样本建立模型

2) 数据的结构难以用传统的统计方法来描述

3) 分类模型难以表示为传统的统计模型

缺点:

1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。

2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。

3)  可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。

优点:

1) 分类的准确度高

2)并行分布处理能力强

3)分布存储及学习能力高

4)对噪音数据有很强的鲁棒性和容错能力

最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。 

定义网络拓扑

在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。

对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入00和10之间。

离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。

一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。

隐藏层单元数设多少个“最好” ,没有明确的规则。

网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。

后向传播算法学习过程:

迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。

每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。

这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。

算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。

后向传播算法分为如下几步:

1) 初始化权

网络的权通常被初始化为很小的随机数(例如,范围从-10到10,或从-05到05)。

每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。

2) 向前传播输入

对于每一个样本X,重复下面两步:

向前传播输入,向后传播误差

计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=

3) 向后传播误差

计算各层每个单元的误差。

输出层单元j,误差:

Oj是单元j的实际输出,而Tj是j的真正输出。

隐藏层单元j,误差:

wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差

更新 权 和 偏差 ,以反映传播的误差。

权由下式更新:

 其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改变。

Example

人类视觉原理:

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。

CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:

这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

降低参数量级:如果使用传统神经网络方式,对一张进行分类,那么,把的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。

但是在CNN里,可以大大减少参数个数,基于以下两个假设:

1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征

2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像

基于以上两个假设,就能把第一层网络结构简化

用100个10x10的小过滤器,就能够描述整幅上的底层特征。

卷积运算的定义如下图所示:

如上图所示,一个5x5的图像,用一个3x3的 卷积核 :

   1  0  1

   0  1  0

   1  0  1

来对图像进行卷积 *** 作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。

这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。

在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:

池化 的过程如下图所示:

可以看到,原始是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。

之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。

即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。

在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。

LeNet网络结构:

注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。

卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

第二阶段,向后传播阶段

a)计算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

(2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。(3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器 。(4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。|||什么是模糊控制?与传统控制理论相比有什么优点?模糊控制是近代控制理论中建立在模糊集合轮上基础上的一种基于语言规则与模糊推理的控制理论,它是智能控制的一个重要分支。与传统控制理论相比,模糊控制有两大不可比拟的优点:第一,模糊控制在许多应用中可以有效且便捷的实现人的控制策略和经验,这一优点自从模糊控制诞生以来就一直受到人们密切的关注;第二,模糊控制不需要被控对象的数学模型即可实现较好的控制,这是因为被控对象的动态特性已隐含在模糊控制器输入、输出模糊集及模糊规则中。所以模糊控制被越来越多的应用于各个领域,尤其是被广泛应用于家电系列中,基于模糊控制的洗衣机就是其中的一个典型实例。|||模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。|||优点:对于难于建立模型的控制对象不失为一种良好的控制方法。

机器人学习是人工神经网络的应用的。

人工神经网络的应用在语音识别、计算机视觉、机器人学习、语言翻译等领域,均战胜传统的机器学习方法,甚至在人脸验证、图像分类上还超过人类的识别能力。

人工神经网络的前景:

神经网络的前景,神经网络基础结构简单,理论上可以拟合各种数据状况,缺点也是因为结构简单,需要大规模的神经网络组合工作,而对这种复杂的网络目前的工具不足以驾驭。导致其演进缓慢。这是其本身自有的优缺点。如果一直没有克服,那就会有新的技术去替代这种结构。

收敛速度慢和易陷入局部极值

由于预测的随机性和不确定性,传统的回归分析、数理统计等方法往往难以达到理想的预测效果。BP神经网络(Back一Propagation Network,BP)是人工神经网络(Artificial Neural Network,ANN)中应用最为广泛的神经网络模型之一,具有较强的非线性映射能力、鲁棒性、容错性和自适应、自组织、自学习等许多特性,在水文预测预报中具有广泛应用。

12 BP神经网络的缺点

然而,在实际应用中,BP神经网络的初始连接权值、阂值的选取对于BP神经网络性能具有关键性影响,若初始连接权值、阂值选取不当,则易导致BP神经网络陷入传统固有的缺陷——收敛速度慢和易陷入局部极值。

13 BP神经网络的优化

目前常用于BP神经网络初始连接权值、阂值优化的智能方法主要是遗传算法(Genetic Algorithm,GA)、粒子群优化(Particle Swarm Optimization,PSO)算法及其改进算法。除此之处,一些仿生群体智能算法被用于BP神经网络初始连接权值、阂值的优化,如人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)、布谷鸟搜寻算法(Cuckoo Search,CS)、蜂群算法(Articficial Bee Colony,ABC)、萤火虫优化算法(Glowworm Swarm Optimization,GSO)以及差分进化算法(Differential Evolution,DE),在提高BP神经网络预测或分类性能上取得了一定的效果。

但由于经网络预测或分类性能上取得了一定的效果。但由于待优化的BP神经网络初始连接权值、阂值维度往往达维度比较高,传统GA等智能算法很难获得更为理想的优化结果。狼群算法(Wolf Pack Algorithm,WPA)是一种模拟狼群分工协作捕猎行为及猎物分配方式的新型仿生群体智能算法,该算法具有较好的鲁棒性和全局搜索能力,在与PSO、AFSA及GA算法的各种测试函数极值寻优比较中,WPA算法显示出较大的性能优势,尤其对于高维、多峰的复杂函数具有更佳的寻优效果。

回答于 2022-12-11

抢首赞

新车除甲醛,别再傻傻开窗了,这几个方法才是正确的方法

值得一看的新车相关信息推荐

新房装修,甲醛异味难清除,很多人不知道这个原因,我评测了以下几种方法,除醛效果有强有弱,除醛甲醛关键是找到深层除醛的方法

无锡醇悦科技发展有限公司广告

高端医疗险_覆盖面广,灵活配置境内外医疗资源

值得一看的医疗保险相关信息推荐

Pacific Prime保险代理能为您量身定做高端医疗保险计划,根据您的需求选择合适的医疗资源,并免费为您比较保费,保险福利等,筛选适合您的保险方案。

寰宇保险代理上海有限公司广告

大家还在搜

185火龙战神手机版

社区团购系统

买天猫店铺

西点师一般月薪多少钱

网上借钱平台哪个好

粉象生活邀请码

去眼袋最有效的方法

手机赚钱靠谱的方法

香港买保险—免费提供给国际医疗保险投保方案

PacificPrime外资保险代理。经验丰富,提供高品质服务,为您量身定做国际医疗保险计划;我们的专业顾问能为你选择适合你的保险产品,为你提供多国语言服务!

广告

bp神经网络的缺点

1)局部极小化问题:从数学角度看,传统的BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。2)BP神经网络算法的收敛速度慢:由于BP神经网络算法本质上为梯度下降法,它所要优化的目标函数是非常复杂的,因此,必然会出现“锯齿形现象”,这使得BP算法低效;又由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿。3)BP神经网络结构选择不一:BP神经网络结构的选择至今尚无一种统一而完整的理论指导,一般只能由经验选定。网络结构选择过大,训练中效率不高,可能出现过拟合现象,造成网络性能低,容错性下降,若选择过小,则又会造成网络可能不收敛。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。4)应用实例与网络规模的矛盾问题:BP神经网络难以解决应用问题的实例规模和网络规模间的矛盾问题,其涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题。5)BP神经网络预测能力和训练能力的矛盾问题:预测能力也称泛化能力或者推广能力,而训练能力也称逼近能力或者学习能力。一般情况下,训练能力差时,预测能力也差。

IT168

160浏览

更多专家

中心点的选择对bp神经网络的性能会有什么影响

专家1对1在线解答问题

5分钟内响应 | 万名专业答主

马上提问

最美的花火 咨询一个电子数码问题,并发表了好评

lanqiuwangzi 咨询一个电子数码问题,并发表了好评

garlic 咨询一个电子数码问题,并发表了好评

1888493 咨询一个电子数码问题,并发表了好评

篮球大图 咨询一个电子数码问题,并发表了好评

动物乐园 咨询一个电子数码问题,并发表了好评

AKA 咨询一个电子数码问题,并发表了好评

BP神经网络模型各个参数的选取问题

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。一、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。二、隐层节点数在BP 网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。 目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。

meng2235

36点赞9283浏览

空气能系统供暖,欧式住宅空气解决方案

最近1小时前有人咨询相关问题

上海昶磊环境科技有广告

福特电马全新价2499万起 现车交付 无需等待

最近19分钟前有人申请相关服务

福特汽车(中国)有广告

全部

1

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12177652.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存