无线传感器网络通信协议的目录

无线传感器网络通信协议的目录,第1张

随着科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。那么,接下来小编为大家介绍无线传感器应用及无线传感器特点。

无线传感器应用

1、军事领域的应用

在军事领域,由于WSN具有密集型、随机分布的特点,使其非常适合应用于恶劣的战场环境。利用WSN能够实现监测敌军区域内的兵力和装备、实时监视战场状况、定位目标、监测核攻击或者生物化学攻击等。

2、辅助农业生产

WSN特别适用于以下方面的生产和科学研究。例如,大棚种植室内及土壤的温度、湿度、光照监测、珍贵经济作物生长规律分析与测量、葡萄优质育种和生产等,可为农村发展与农民增收带来极大的帮助。采用WSN建设农业环境自动监测系统,用一套网络设备完成风、光、水、电、热和农药等的数据采集和环境控制,可有效提高农业集约化生产程度,提高农业生产种植的科学性。

3、生态监测与灾害预警

WSN可以广泛地应用于生态环境监测、生物种群研究、气象和地理研究、洪水、火灾监测。环境监测为环境保护提供科学的决策依据,是生态保护的基础。在野外地区或者不宜人工监测的区域布置WSN可以进行长期无人值守的不间断监测,为生态环境的保护和研究提供实时的数据资料。具体的应用包括:通过跟踪珍稀鸟类等动物的栖息、觅食习惯进行濒危种群的研究;在河流沿线区域布置传感器节点,随时监测水位及水资源被污染的情况;在泥石流、滑坡等自然灾害容易发生的地区布置节点,可提前发出灾害预警,及时采取相应抗灾措施;可在重点保护林区布置大量节点随时监控内部火险情况,一旦发现火情,可立刻发出警报,并给出具体位置及当前火势的大小;可将节点布置在发生地震、水灾等灾害的地区、边远山区或偏僻野外地区,用于临时应急通信。

4、基础设施状态监测系统

WSN技术对于大型工程的安全施工以及建筑物安全状况的监测有积极的帮助作用。通过布置传感器节点,可以及时准确地观察大楼、桥梁和其他建筑物的状况,及时发现险情,及时进行维修,避免造成严重后果。

5、工业领域的应用

在工业安全方面,传感器网络技术可用于危险的工作环境,例如在煤矿、石油钻井、核电厂和组装线布置传感器节点,可以随时监测工作环境的安全状况,为工作人员的安全提供保证。另外,传感器节点还可以代替部分工作人员到危险的环境中执行任务,不仅降低了危险程度,还提高了对险情的反应精度和速度。

无线传感器特点

1、电源能力局限性

节点通常由电池供电,每个节点的能源是有限的,一旦电池能量耗尽,节点就会停止正常工作。

2、节点数量多

为了获取精确信息,在监测区域通常部署大量传感器节点,通过分布式处理大量采集的信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或盲区。

3、动态拓扑

无线传感器网络是一个动态的网络,节点可以随处移动;某个节点可能会因为电池能量耗尽或其他故障,退出网络运行;也可能由于工作的需要而被添加到网络中。

4、自组织网络

在无线传感器网络应用中,通常情况下传感器节点的位置不能预先精确设定。节点之间的相互邻居关系也不能预先知道,如通过飞机撒播大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理。无线传感器网络的自组织性还要求能够适应网络拓扑结构的动态变化。

5、多跳路由

网络中节点通信距离一般在几十到几百米范围内,节点只能与它的邻居直接通信。如果希望与其射频覆盖范围之外的节点进行通信,则需要通过中间节点进行路由。无线传感器网络中的多跳路由是由普通网络节点完成的,没有专门的路由设备。这样每个节点既可以是信息的发起者,也可以是信息的转发者。

6、以数据为中心

传感器网络中的节点采用编号标识,节点编号不需要全网唯一。由于传感器节点随机部署,节点编号与节点位置之间的关系是完全动态的,没有必然联系。用户查询事件时,直接将所关心的事件通告给网络,而不是通告给某个确定编号的节点。网络在获得指定事件的信息后汇报给用户。这是一种以数据本身作为查询或者传输线索的思想。所以通常说传感器网络是一个以数据为中心的网络。

1、根据网络覆盖范围的不同,可以将无线网络划分为无线广域网、无线局域网、无线城域网和无线个人局域网。

2、根据网络应用场合的不同,可以将无线网络划分为无线传感器网络、无线Mesh网络,可穿戴式无线网络和无线体域网络等。

3、根据无线网络拓扑结构的不同,无线网络又可以划分为不同的类型,有五大网络拓扑结构,分别是总线、令牌环、星型、树型和网状。

无线局域网的优缺点如下:

1、无线局域网的优点

灵活性和移动性:在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。

2、安装便捷:无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。

3、易于进行网络规划和调整:对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。

4、故障定位容易:有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。

5、易于扩展:无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间“漫游’’等有线网络无法实现的特性。

无线局域网的缺点:

1、性能:无线局域网是依靠无线电波进行传输的。这些电波通过无线发射装置进行发射,而建筑物、车辆、树木和其他障碍物都可能阻碍电磁波的传输,所以会影响网络的性能。

2、速率:无线信道的传输速率与有线信道的传输速率相比要低得多。目前,无线局域网的最大传输速率为54Mb/s,只适合于个人终端和小规模网络应用。

3、安全性:本质r无线电波不要求建立物理的连接通道,无线信号是发散的。从理论上讲,很容易监听到无线电波广播范围内的任何信号,造成通信信息泄漏。

扩展资料:

特点:

1、可移动性强,能突破时空的限制。

无线网络是通过发射无线电波来传递网络信号的,只要处于发射的范围之内,人们就可以利用相应的接受设备来实现对相应网络的连接。

2、网络扩展性能相对较强。

可以随时通过无线信号进行接人,其网络扩展性能相对较强,可以有效实现网络工作的扩展和配置的设置等。

3、设备安装简易、成本低廉。

无线网络则无需布设大量的网线,安装—个无线网络发射设备即可,同时这也为后期网络维护创造了非常便利的条件,极大地降低了网络前期安装和后期维护的成本费用。

—无线网络

  无线传感器网络是近几年发展起来的一种新兴技术,在条件恶劣和无人坚守的环境监测和事件跟踪中显示了很大的应用价值。节点部署是无线传感器网络工作的基础,对网络的运行情况和寿命有很大的影响。部署问题涉及覆盖、连接和节约能量消耗3个方面。该文重点讨论了网络部署中的覆盖问题,综述了现有的研究成果,总结了今后的热点研究方向,为以后的研究奠定了基础。

  基于虚拟势场的有向传感器网络覆盖增强算法

  陶 丹+, 马华东, 刘 亮

  (智能通信软件与多媒体北京市重点实验室(北京邮电大学),北京 100876)

  A Virtual Potential Field Based Coverage-Enhancing Algorithm for Directional Sensor Networks

  TAO Dan+, MA Hua-Dong, LIU Liang

  (Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876, China)

  + Corresponding author: Phn: +86-10-62282277, Fax: +86-10-62283523, E-mail: tdfxy@vipsinacom, http://wwwbupteducn

  Tao D, Ma HD, Liu L A virtual potential field based coverage-enhancing algorithm for directional sensor networks Journal of Software, 2007,18(5):11521163 http://wwwjosorgcn/1000-9825/18/1152htm

  Abstract: Motivated by the directional sensing feature of video sensor, a direction adjustable sensing model is proposed first in this paper Then, the coverage-enhancing problem in directional sensor networks is analyzed and defined Moreover, a potential field based coverage-enhancing algorithm (PFCEA) is presented By introducing the concept of “centroid”, the pending problem is translated into the centroid points’ uniform distribution problem Centroid points repel each other to eliminate the sensing overlapping regions and coverage holes, thus enhance the whole coverage performance of the directional sensor network A set of simulation results are performed to demonstrate the effectiveness of the proposed algorithm

  Key words: directional sensor network; directional sensing model; virtual potential field; coverage enhancement

  摘 要: 首先从视频传感器节点方向性感知特性出发,设计了一种方向可调感知模型,并以此为基础对有向传感器网络覆盖增强问题进行分析与定义;其次,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA (potential field based coverage-enhancing algorithm)通过引入“质心”概念,将有向传感器网络覆盖增强问题转化为质心均匀分布问题,以质心点作圆周运动代替传感器节点传感方向的转动质心在虚拟力作用下作扩散运动,以消除网络中感知重叠区和盲区,进而增强整个有向传感器网络覆盖一系列仿真实验验证了该算法的有效性

  关键词: 有向传感器网络;有向感知模型;虚拟势场;覆盖增强

  中图法分类号: TP393 文献标识码: A

  覆盖作为传感器网络中的一个基本问题,反映了传感器网络所能提供的“感知”服务质量优化传感器网络覆盖对于合理分配网络的空间资源,更好地完成环境感知、信息获取任务以及提高网络生存能力都具有重要的意义[1]目前,传感器网络的初期部署有两种策略:一种是大规模的随机部署;另一种是针对特定的用途进行计划部署由于传感器网络通常工作在复杂的环境下,而且网络中传感器节点众多,因此大都采用随机部署方式然而,这种大规模随机投放方式很难一次性地将数目众多的传感器节点放置在适合的位置,极容易造成传感器网络覆盖的不合理(比如,局部目标区域传感器节点分布过密或过疏),进而形成感知重叠区和盲区因此,在传感器网络初始部署后,我们需要采用覆盖增强策略以获得理想的网络覆盖性能

  目前,国内外学者相继开展了相关覆盖增强问题的研究,并取得了一定的进展[25]从目前可获取的资料来看,绝大多数覆盖问题研究都是针对基于全向感知模型(omni-directional sensing model)的传感器网络展开的[6],

  即网络中节点的感知范围是一个以节点为圆心、以其感知距离为半径的圆形区域通常采用休眠冗余节点[2,7]、

  重新调整节点分布[811]或添加新节点[11]等方法实现传感器网络覆盖增强

  实际上,有向感知模型(directional sensing model)也是传感器网络中的一种典型的感知模型[12],即节点的感知范围是一个以节点为圆心、半径为其感知距离的扇形区域由基于有向感知模型的传感器节点所构成的网络称为有向传感器网络视频传感器网络是有向传感器网络的一个典型实例感知模型的差异造成了现有基于全向感知模型的覆盖研究成果不能直接应用于有向传感器网络,迫切需要设计出一系列新方法

  在早期的工作中[13],我们率先开展有向传感器网络中覆盖问题的研究,设计一种基本的有向感知模型,用以刻画视频传感器节点的方向性感知特性,并研究有向传感器网络覆盖完整性以及通信连通性问题同时,考虑到有向传感器节点传感方向往往具有可调整特性(比如PTZ摄像头的推拉摇移功能),我们进一步提出一种基于图论和计算几何的集中式覆盖增强算法[14],调整方案一经确定,网络中所有有向传感器节点并发地进行传感方向的一次性调整,以此获得网络覆盖性能的增强但由于未能充分考虑到有向传感器节点局部位置及传感方向信息,因而,该算法对有向传感器网络覆盖增强的能力相对有限

  本文将基本的有向感知模型扩展为方向可调感知模型,研究有向传感器网络覆盖增强问题首先定义了方向可调感知模型,并分析随机部署策略对有向传感器网络覆盖率的影响在此基础上,分析了有向传感器网络覆盖增强问题本文通过引入“质心”概念,将待解决问题转化为质心均匀分布问题,提出了一种基于虚拟势场的有向传感器网络覆盖增强算法PFCEA(potential field based coverage-enhancing algorithm)质心在虚拟力作用下作扩散运动,逐步消除网络中感知重叠区和盲区,增强整个网络覆盖性能最后,一系列仿真实验验证了PFCEA算法的有效性

  1 有向传感器网络覆盖增强问题

  本节旨在分析和定义有向传感器网络覆盖增强问题在此之前,我们对方向可调感知模型进行简要介绍

  11 方向可调感知模型

  不同于目前已有的全向感知模型,方向可调感知模型的感知区域受“视角”的限制,并非一个完整的圆形区域在某时刻t,有向传感器节点具有方向性感知特性;随着其传感方向的不断调整(即旋转),有向传感器节点有能力覆盖到其传感距离内的所有圆形区域由此,通过简单的几何抽象,我们可以得到有向传感器节点的方向可调感知模型,如图1所示

  定义1 方向可调感知模型可用一个四元组P,R, ,

  表示其中,P=(x,y)表示有向传感器节点的位置坐标;R表示节

  点的最大传感范围,即传感半径;单位向量 = 为扇形感知区域的中轴线,即节点在某时刻t时的传感方向; 和 分别是单位向量 在X轴和Y轴方向上的投影分量;表示边界距离传感向量 的传感夹角,2代表传感区域视角,记作FOV

  特别地,当=时,传统的全向感知模型是方向可调感知模型的一个特例

  若点P1被有向传感器节点vi覆盖成立,记为viP1,当且仅当满足以下条件:

  (1) ,其中, 代表点P1到该节点的欧氏距离;

  (2) 与 间夹角取值属于[,]

  判别点P1是否被有向传感器节点覆盖的一个简单方法是:如果 且 ,那么,点P1

  被有向传感器节点覆盖;否则,覆盖不成立另外,若区域A被有向传感节点覆盖,当且仅当区域A中任何一个点都被有向传感节点覆盖除非特别说明,下文中出现的“节点”和“传感器节点”均满足上述方向可调感知模型

  12 有向传感器网络覆盖增强问题的分析与定义

  在研究本文内容之前,我们需要作以下必要假设:

  A1 有向传感器网络中所有节点同构,即所有节点的传感半径(R)、传感夹角()参数规格分别相同;

  A2 有向传感器网络中所有节点一经部署,则位置固定不变,但其传感方向可调;

  A3 有向传感器网络中各节点都了解自身位置及传感方向信息,且各节点对自身传感方向可控

  假设目标区域的面积为S,随机部署的传感器节点位置满足均匀分布模型,且目标区域内任意两个传感器节点不在同一位置传感器节点的传感方向在[0,2]上也满足均匀分布模型在不考虑传感器节点可能落入边界区域造成有效覆盖区域减小的情况下,由于每个传感器节点所监控的区域面积为R2,则每个传感器节点能监测整个目标区域的概率为R2/S目标区域被N个传感器节点覆盖的初始概率p0的计算公式为(具体推导过程参见文献[14])

  (1)

  由公式(1)可知,当目标区域内网络覆盖率至少达到p0时,需要部署的节点规模计算公式为

  (2)

  当网络覆盖率分别为p0和p0+p时,所需部署的传感器节点数目分别为ln(1p0)/,ln(1(p0+p))/其中, =ln(SR2)lnS因此,传感器节点数目差异N由公式(3)可得,

  (3)

  当目标区域面积S、节点传感半径R和传感夹角一定时,为一常数此时,N与p0,p满足关系如图2所示(S=500500m2,R=60m,=45º)从图中我们可以看出,当p0一定时,N随着p的增加而增加;当p一定时,N随着p0的增加而增加,且增加率越来越大因此,当需要将覆盖率增大p时,则需多部署N个节点(p0取值较大时(80%),p取值每增加1%,N就有数十、甚至数百的增加)如果采用一定的覆盖增强策略,无须多部署节点,就可以使网络覆盖率达到p0+p,大量节省了传感器网络部署成本

  设Si(t)表示节点vi在传感向量为 时所覆盖的区域面积运算 *** 作Si(t)Sj(t)代表节点vi和节点vj所能覆盖到的区域总面积这样,当网络中节点传感向量取值为 时,有向传感器网络覆盖率可表

  示如下:

  (4)

  因此,有向传感器网络覆盖增强问题归纳如下:

  问题:求解一组 ,使得对于初始的 ,有 取值

  接近最大

  Fig2 The relation among p0, p and N

  图2 p0,p和N三者之间的关系

  2 基于虚拟势场的覆盖增强算法

  21 传统虚拟势场方法

  虚拟势场(virtual potential field)的概念最初应用于机器人的路径规划和障碍躲避Howard等人[8]和Poduri等人[9]先后将这一概念引入到传感器网络的覆盖增强问题中来其基本思想是把网络中每个传感器节点看作一个虚拟的电荷,各节点受到其他节点的虚拟力作用,向目标区域中的其他区域扩散,最终达到平衡状态,即实现目标区域的充分覆盖状态Zou等人[15]提出了一种虚拟力算法(virtual force algorithm,简称VFA),初始节点随机部署后自动完善网络覆盖性能,以均匀网络覆盖并保证网络覆盖范围最大化在执行过程中,传感器节点并不移动,而是计算出随机部署的传感器节点虚拟移动轨迹一旦传感器节点位置确定后,则对相应节点进行一次移动 *** 作Li等人[10]为解决传感器网络布局优化,在文献[15]的基础上提出了涉及目标的虚拟力算法(target involved virtual force algorithm,简称TIVFA),通过计算节点与目标、热点区域、障碍物和其他传感器之间的虚拟力,为各节点寻找受力平衡点,并将其作为该传感器节点的新位置

  上述利用虚拟势场方法优化传感器网络覆盖的研究成果都是基于全向感知模型展开的假定传感器节点间存在两种虚拟力作用:一种是斥力,使传感器节点足够稀疏,避免节点过于密集而形成感知重叠区域;另一种是引力,使传感器节点保持一定的分布密度,避免节点过于分离而形成感知盲区[15]最终利用传感器节点的位置移动来实现传感器网络覆盖增强

  22 基于虚拟势场的有向传感器网络覆盖增强算法

  在实际应用中,考虑到传感器网络部署成本,所有部署的传感器节点都具有移动能力是不现实的另外,传感器节点位置的移动极易引起部分传感器节点的失效,进而造成整个传感器网络拓扑发生变化这些无疑都会增加网络维护成本因而,本文的研究工作基于传感器节点位置不变、传感方向可调的假设上述假设使得直接利用虚拟势场方法解决有向传感器网络覆盖增强问题遇到了麻烦在传统的虚拟势场方法中,传感器节点在势场力的作用下进行平动(如图3(a)所示),而基于本文的假设,传感器节点表现为其扇形感知区域在势场力的作用下以传感器节点为轴心进行旋转(如图3(b)所示)

  为了简化扇形感知区域的转动模型,我们引入“质心(centroid)”的概念质心是质点系中一个特定的点,它与物体的平衡、运动以及内力分布密切相关传感器节点的位置不变,其传感方向的不断调整可近似地看作是扇形感知区域的质心点绕传感器节点作圆周运动如图3(b)所示,一个均匀扇形感知区域的质心点位于其对称轴上且与圆心距离为2Rsin/3每个传感器节点有且仅有一个质心点与其对应我们用c表示传感器节点v所对应的质心点本文将有向传感器网络覆盖增强问题转化为利用传统虚拟势场方法可解的质心点均匀分布问题,如图4所示

  Fig3 Moving models of sensor node

  图3 传感器节点的运动模型

  Fig4 The issue description of coverage enhancement in directional sensor networks

  图4 有向传感器网络覆盖增强问题描述

  221 受力分析

  利用虚拟势场方法增强有向传感器网络覆盖,可以近似等价于质心点-质心点(c-c)之间虚拟力作用问题我们假设质心点-质心点之间存在斥力,在斥力作用下,相邻质心点逐步扩散开来,在降低冗余覆盖的同时,逐渐实现整个监测区域的充分高效覆盖,最终增强有向传感器网络的覆盖性能在虚拟势场作用下,质心点受来自相邻一个或多个质心点的斥力作用下面给出质心点受力的计算方法

  如图5所示,dij表示传感器节点vi与vj之间的欧氏距离只有当dij小于传感器节点传感半径(R)的2倍时,它们的感知区域才存在重叠的可能,故它们之间才存在产生斥力的作用,该斥力作用于传感器节点相应的质心点ci和cj上

  定义2 有向传感器网络中,欧氏距离不大于节点传感半径(R)2倍的一对节点互为邻居节点节点vi的邻居节点集合记作i即i={vj|Dis(vi,vj)2R,ij}

  我们定义质心点vj对质心点vi的斥力模型 ,见公式(5)

  (5)

  其中,Dij表示质心点ci和cj之间的欧氏距离;kR表示斥力系数(常数,本文取kR=1);ij为单位向量,指示斥力方向(由质心点cj指向ci)公式(5)表明,只有当传感器节点vi和vj互为邻居节点时(即有可能形成冗余覆盖时),其相应的质心点ci和cj之间才存在斥力作用质心点所受斥力大小与ci和cj之间的欧氏距离成反比,而质心点所受斥力方向由ci和cj之间的相互位置关系所决定

  质心点ci所受合力是其受到相邻k个质心点排斥力的矢量和公式(6)描述质心点ci所受合力模型

  (6)

  通过如图6所示的实例,我们分析质心点的受力情况图中包括4个传感器节点:v1,v2,v3和v4,其相应的质心

  点分别为c1,c2,c3和c4以质心点c1为例,由于d122R,故 ,质心点c1仅受到来自质心点c3和c4的斥力,其所受合力 传感器节点传感方向旋转导致质心点的运动轨迹并不是任意的,而是固定绕传感器节点作圆周运动因此,质心点的运动仅仅受合力沿圆周切线方向分量 的影响

  Fig6 The force on centroid

  图6 质心点受力

  222 控制规则(control law)

  本文基于一个虚拟物理世界研究质心点运动问题,其中作用力、质心点等都是虚拟的该虚拟物理世界的构建是建立在求解问题特征的基础上的在此,我们定义控制规则,即规定质心点受力与运动之间的关系,以达到质心点的均匀分布

  质心点在 作用下运动,受到运动学和动力学的双重约束,具体表现如下:

  (1) 运动学约束

  在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,由于传感器节点向任意方向运动的概率是等同的,我们大都忽略其所受的运动学约束[8]而在转动模型中,质心点的运动不是任意方向的,受合力沿圆

  周切线方向分量 的影响,只能绕其传感器节点作圆周运动

  质心点在运动过程中受到的虚拟力是变化的,但对传感器网络系统来说,传感器节点之间每时每刻都交换邻居节点位置及传感方向信息是不现实的因此,我们设定邻居节点间每隔时间步长t交换一次位置及传感方向信息,根据交换信息计算当前时间步长质心点所受合力,得出转动方向及弧长同时,问题求解的目的在于将节点的传感方向调整至一个合适的位置在此,我们不考虑速度和加速度与转动弧长之间的关系

  (2) 动力学约束

  动力学约束研究受力与运动之间的关系本运动模型中的动力学约束主要包含两方面内容:

  • 每个时间步长t内,质心点所受合力与转动方向及弧长之间的关系;

  • 质心点运动的静止条件

  在传统传感器网络中利用虚拟势场方法移动传感器节点的情况下,在每个时间步长内,传感器节点的运动速度受限于最大运动速度vmax,而不是随传感器节点受力无止境地增加通过此举保证微调方法的快速收敛在本转动模型中,我们同样假设质心点每次固定以较小的转动角度进行转动,通过多次微调方法逐步趋向最优解,即在每个时间步长t内,质心点转动的方向沿所受合力在圆周切线方向分量,转动大小不是任意的,而是具有固定转动角度采用上述方法的原因有两个:

  • 运动过程中,质心点受力不断变化,且变化规律很难用简单的函数进行表示,加之上述运动学约束和问题特征等因素影响,我们很难得出一个简明而合理的质心点所受合力与转动弧长之间的关系

  • 运动过程中,质心点按固定角度进行转动,有利于简化计算过程,减少节点的计算负担同时,我们通过分析仿真实验数据发现,该方法具有较为理想的收敛性(具体讨论参见第32节)

  固定转动角度取值不同对PFCEA算法性能具有较大的影响,这在第33节中将加以详细的分析和说明

  当质心点所受合力沿圆周切线方向分量为0时,其到达理想位置转动停止如图7所示,我们假定质心点在圆周上O点处合力切向分量为0由于质心点按固定转动角度进行转动,因此,它

  未必会刚好转动到O点处当质心点处于图7中弧 或 时,会

  因合力切向分量不为0而导致质心点围绕O点附近往复振动因此,为避免出现振动现象,加速质心点达到稳定状态,我们需要进一步限定质心点运动的停止条件

  当质心点围绕O点附近往复振动时,其受合力的切向分量很

  小因此,我们设定受力门限,当 (本文取=10e6),即可认

  定质心点已达到稳定状态,无须再运动经过数个时间步长t后,当网络中所有质心点达到稳定状态时,整个传感器网络即达到稳定状态,此时对应的一组 ,该

  组解通常为本文覆盖增强的较优解

  23 算法描述

  基于上述分析,本文提出了基于虚拟势场的网络覆盖增强算法(PFCEA),该算法是一个分布式算法,在每个传感器节点上并发执行PFCEA算法描述如下:

  输入:节点vi及其邻居节点的位置和传感方向信息

  输出:节点vi最终的传感方向信息

  1 t0; //初始化时间步长计数器

  2 计算节点vi相应质心点ci初始位置 ;

  3 计算节点vi邻居节点集合i,M表示邻居节点集合中元素数目;

  4 While (1)

  41 tt+1;

  42 ;

  43 For (j=0; j<M; j++)

  431 计算质心点cj对ci的当前斥力 ,其中,vji;

  432 ;

  44 计算质心点ci当前所受合力 沿圆周切线分量 ;

  45 确定质心点ci运动方向;

  46 If ( ) Then

  461 质心点ci沿 方向转动固定角度;

  462 调整质心点ci至新位置 ;

  463 计算节点vj指向当前质心点ci向量并单位化,得到节点vi最终的传感方向信息 ;

  47 Sleep (t);

  5 End

  3 算法仿真与性能分析

  我们利用VC60自行开发了适用于传感器网络部署及覆盖研究的仿真软件Senetest20,并利用该软件进行了大量仿真实验,以验证PFCEA算法的有效性实验中参数的取值见表1为简化实验,假设目标区域中所有传感器节点同构,即所有节点的传感半径及传感夹角规格分别相同

  Table 1 Experimental parameters

  表1 实验参数

  Parameter Variation

  Target area S 500500m2

  Area coverage p 0~1

  Sensor number N 0~250

  Sensing radius Rs 0~100m

  Sensing offset angel  0º~90º

  31 实例研究

  在本节中,我们通过一个具体实例说明PFCEA算法对有向传感器网络覆盖增强在500500m2的目标区域内,我们部署传感半径R=60m、传感夹角=45º的传感器节点完成场景监测若达到预期的网络覆盖率p=70%, 通过公式(1),我们可预先估算出所需部署的传感器节点数目,

  

  针对上述实例,我们记录了PFCEA算法运行不同时间步长时有向传感器网络覆盖增强情况,如图8所示

  (a) Initial coverage, p0=6574%

  (a) 初始覆盖,p0=6574% (b) The 10th time step, p10=7603%

  (b) 第10个时间步长,p10=7603%

  (c) The 20th time step, p20=8020%

  (c) 第20个时间步长,p20=8020% (d) The 30th time step, p30=8145%

  (d) 第30个时间步长,p30=8145%

  Fig8 Coverage enhancement using PFCEA algorithm

  图8 PFCEA算法实现覆盖增强

  直观看来,质心点在虚拟斥力作用下进行扩散运动,逐步消除网络中感知重叠区和盲区,最终实现有向传感器网络覆盖增强此例中,网络传感器节点分别经过30个时间步长的调整,网络覆盖率由最初的6574%提高到8145%,网络覆盖增强达1571个百分点

  图9显示了逐个时间步长调整所带来的网络覆盖增强我们发现,随着时间步长的增加,网络覆盖率也不断增加,且近似满足指数关系当时间步长达到30次以后,网络中绝大多数节点的传感方向出现振动现象,直观表现为网络覆盖率在8120%附近在允许的范围振荡此时,我们认定有向传感器网络覆盖性能近似增强至最优

  网络覆盖性能可以显著地降低网络部署成本实例通过节点传感方向的自调整,在仅仅部署105个传感器节点的情况下,最终获得8145%的网络覆盖率若预期的网络覆盖率为8145%,通过公式(1)的计算可知,我们至少需要部署148个传感器节点由此可见,利用PFCEA算法实现网络覆盖增强的直接效果是可以节省近43个传感器节点,极大地降低了网络部署成本

  32 收敛性分析

  为了讨论本文算法的收敛性,我们针对4种不同的网络节点规模进行多组实验我们针对各网络节点规模随机生成10个拓扑结构,分别计算算法收敛次数,并取平均值,实验数据见表2其他实验参数为R=60m,=45º, =5º

  Table 2 Experimental data for convergence analysis

  表2 实验数据收敛性分析

  (%)

  (%)

  1 50 4128 5273 24

  2 70 5274 6498 21

  3 90 6076 7324 28

  4 110 6558 7802 27

  分析上述实验数据,我们可以得出,PFCEA算法的收敛性即调整的次数,并不随传感器网络节点规模的变化而发生显著的改变,其取值一般维持在[20,30]范围内由此可见,本文PFCEA算法具有较好的收敛性,可以在较短的时间步长内完成有向传感器网络的覆盖增强过程

  33 仿真分析

  在本节中,我们通过一系列仿真实验来说明4个主要参数对本文PFCEA算法性能的影响它们分别是:节点规模N、传感半径R、传感夹角和(质心点)转动角度针对前3个参数,我们与以往研究的一种集中式覆盖增强算法[14]进行性能分析和比较

  A 节点规模N、传感半径R以及传感角度

  我们分别取不同节点规模进行仿真实验从图10(a)变化曲线可以看出,当R和一定时,N取值较小导致网络初始覆盖率较小此时,随着N的增大,p取值呈现持续上升趋势当N=200时,网络覆盖率增强可达1440个百分点此后,p取值有所下降这是由于当节点规模N增加导致网络初始覆盖率较高时(如60%),相邻多传感器节点间形成覆盖盲区的概率大为降低,无疑削弱了PFCEA算法的性能另外,部分传感器节点落入边界区域,也会间接起到削弱PFCEA算法性能的作用

  另外,传感半径、传感角度对PFCEA算法性能的影响与此类似当节点规模一定时,节点传感半径或传感角度取值越小,单个节点的覆盖区域越小,各相邻节点间形成感知重叠区域的可能性也就越小此时,PFCEA算法对网络覆盖性能改善并不显著随着传感半径或传感角度的增加,p不断增加当R=70m且=45º时,网络覆盖率最高可提升1591%但随着传感半径或传感角度取值的不断增加,PFCEA算法带来的网络覆盖效果降低,如图10(b)、图10(c)所示

  (c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º

  (c) 传感角度的影响,其他实验参数满足:N=100,R=40m,=5º

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/12186945.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存