pydoop:用python 写Hadoop的MapReduce
pydoop:用python 写Hadoop的MapReducePydoop 是用python 对Hadoop 的C++API的MapReduce和HDFS的封装。程序很小,只有500多KB。
[zhouhh@Hadoop48 ~]$ tar -zxvf pydoop-0.5.2-rc2.tar.gz
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ python setup.py build
build通过后,执行安装
可以安装在系统中或安装在本地
sudo安装时如果不跟参数,会导致环境变量不可用:
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ sudo python setup.py install
错误:
RuntimeError: Could not determine JAVA_HOME path
但是该环境变量是存在的:
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ echo $JAVA_HOME /usr/java/jdk1.7.0打开setup.py
self.java_home = os.getenv("JAVA_HOME", find_first_existing("/opt/sun-jdk", "/usr/lib/jvm/java-6-sun"))改为:
self.java_home = os.getenv("JAVA_HOME", find_first_existing("/opt/sun-jdk", "/usr/lib/jvm/java-6-sun","/usr/java/jdk1.7.0"))再执行setup.py install
ValueError: HADOOP_HOME not set [zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ echo $HADOOP_HOME /home/zhouhh/hadoop-1.0.3[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ echo $HADOOP_HOME /home/zhouhh/hadoop-1.0.3找到:
paths = reduce(list.__add__, map(glob.glob, (“/opt/hadoop*”, “/usr/lib/hadoop*”, “/usr/local/lib/hadoop*”)))
改为:
paths = reduce(list.__add__, map(glob.glob, (“/opt/hadoop*”, “/usr/lib/hadoop*”, “/usr/local/lib/hadoop*”,”/home/zhouhh/hadoop-*”)))
…
为了避免环境变量问题,
如果安装到系统,应略过创建:
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ sudo python setup.py install –skip-build
或者直接装在当前用户下:
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ python setup.py install –user
或安装到指定目录:
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ python setup.py install –home /home/zhouhh/pydoop
检验是否成功:
[zhouhh@Hadoop48 pydoop-0.5.2-rc2]$ cd test [zhouhh@Hadoop48 test]$ python all_test.pyImportError: /usr/lib64/libboost_python.so.2: undefined symbol: PyUnicodeUCS4_FromEncodedObject
单词计数示例
from pydoop.pipes import Mapper, Reducer, Factory, runTask class WordCountMapper(Mapper): def map(self, context): words = context.getInputValue().split() for w in words: context.emit(w, "1") class WordCountReducer(Reducer): def reduce(self, context): s = 0 while context.nextValue(): s += int(context.getInputValue()) context.emit(context.getInputKey(), str(s)) runTask(Factory(WordCountMapper, WordCountReducer))对简单任务,可以使用pydoop_script工具:
def mapper(k, text, writer): for word in text.split(): writer.emit(word, 1) def reducer(word, count, writer): writer.emit(word, sum(map(int, count)))参考:
下载:https://sourceforge.net/projects/pydoop/files
示例地址:http://pydoop.sourceforge.net/docs/examples/index.html
最新版下载:http://sourceforge.net/projects/pydoop/files/Pydoop-0.5/pydoop-0.5.2-rc2.tar.gz/download
主页:http://sourceforge.net/apps/mediawiki/pydoop/index.php?title=Main_Page
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)