Django能不能做大用户量的系统框架

Django能不能做大用户量的系统框架,第1张

Django能不能做大用户量的系统框架

Django适合做大用户量的系统吗?

分几点来答:

1. 首先,这其实是个技术选型题。

做技术选型的时候不能单纯的考虑性能,应该优先考虑业务类型,以及团队水平。另外的话,框架只是其中一环,还有配套呢。

如果是数据驱动型,尤其是要用吗?到关系型数据库,那么选择Django足以,ORM会比较省事,但是性能损耗是个很明显的问题。不过还是看团队,如果大家玩flask或者bottle都贼溜,那么还要什么Django,自己造就行了。(题外话,不过你得提防比较水的人破坏整体结构)

如果下游是由很多微服务构成的,Tornado处理起来会有一定优势,用它的异步模型。

2. Django能抗多少量?

上面选型如果定下来Django了,那么剩下的就是“Where there is a will, there is a way”的问题。这个问题跟“Where there is a way, there is a will”的差别在于,并不是框架能支撑你到多大的并发量,而是你想要抗住很大的并发量,怎么优化现有框架。

当你的项目大到一定程度,瓶颈基本不在框架上。

我们用Django开发对外的产品不多,量级10w 100w的都有,但是我们上线前的准备都是朝着要抗足够高的流量目标的(谁没有一颗抗万亿流量的心呢),并且要能够通过增加机器提高承载能力。当然有些业务类型没法通过简单的增加机器来进行扩容,那只能通过其他途径优化单机的TPS。所以最终压测的结果都要远高于真实流量。百万量级的产品,扛起来并不费力。不过还是强调一下,看业务类型!

3. 用户体验问题

当量级变大之后,影响用户体验吗?

用户体验分很多方面,包括交互,设计,前端,后端。这里讨论的是后端,那么就说后端。后端对用户体验的影响只有一个——那就是响应时间。当你的网站或者接口有一个用户访问时,能在短时间内返回response,那么,当用户量达到10w时,是否能在同样的时间内返回response呢?这是个问题。

对于后端来说,把响应时间控制在合理的范围之内是很重要的。20ms和30ms或许差别不大,但是50ms跟100ms会有明显差别。

怎么衡量合理的返回时间呢?

这块还是得说点细节,比方说Django的系统,一个用户请求进来了,需要涉及多少次Redis查询,平均每次响应时间是多少;涉及到多少次内网或者外网的HTTP请求,平均响应时间是多少;涉及到多少次MySQL查询,平均响应时间是多少。

所以大家面试时都喜欢问一个问题:用户输入网址之后,到页面展示出来的详细过程是什么?

当你知道了所有的细节之后,你就能知道,如果系统只涉及到Redis查询,那应该多少ms内返回是合理的,如果你发现nginx日志里面的后端响应时间高于你的预期,那你就得排查下了。其他的也是类似。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3015615.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-09-28
下一篇 2022-09-28

发表评论

登录后才能评论

评论列表(0条)

保存