Python实现删除某列中含有空值的行的示例代码

Python实现删除某列中含有空值的行的示例代码,第1张

Python实现删除某列中含有空值的行的示例代码

客户需求

查看销售人员不为空值的行

数据存储情况如图:


代码实现

import pandas as pd

data = pd.read_excel('test.xlsx',sheet_name='Sheet1')
datanota = data[data['销售人员'].notna()]
print(datanota)

输出结果

D:PythonAnacondapython.exe D:/Python/test/EASdeal/test.py
城市 销售金额 销售人员
0 北京 10000 张丽丽
1 上海 50000 潇潇
2 深圳 60000 笨笨笨
3 成都 40000 达达

Process finished with exit code 0

如何删除特定列为空/ NaN的行?

我有一个csv文件.我读了它:

import pandas as pd
data = pd.read_csv('my_data.csv', sep=',')
data.head()

它的输出如下:

id    city    department    sms    category
01    khi      revenue      NaN       0
02    lhr      revenue      good      1
03    lhr      revenue      NaN       0

我想删除sms列为空/ NaN的所有行.什么是有效的方法呢?

解决方法:

将dropna与参数子集一起使用以指定用于检查NaN的列:

data = data.dropna(subset=['sms'])
print (data)
  id city department  sms category
1  2 lhr  revenue good     1

boolean indexing和notnull的另一个解决方案:

data = data[data['sms'].notnull()]
print (data)
  id city department  sms category
1  2 lhr  revenue good     1

替代query:

print (data.query("sms == sms"))
  id city department  sms category
1  2 lhr  revenue good     1

计时

#[300000 rows x 5 columns]
data = pd.concat([data]*100000).reset_index(drop=True)

In [123]: %timeit (data.dropna(subset=['sms']))
100 loops, best of 3: 19.5 ms per loop

In [124]: %timeit (data[data['sms'].notnull()])
100 loops, best of 3: 13.8 ms per loop

In [125]: %timeit (data.query("sms == sms"))
10 loops, best of 3: 23.6 ms per loop


到此这篇关于Python实现删除某列中含有空值的行的示例代码的文章就介绍到这了,更多相关Python删除某列空值内容请搜索考高分网以前的文章或继续浏览下面的相关文章希望大家以后多多支持考高分网!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3214056.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-03
下一篇 2022-10-03

发表评论

登录后才能评论

评论列表(0条)

保存