python 使用递归的方式实现语义图片分割功能

python 使用递归的方式实现语义图片分割功能,第1张

python 使用递归的方式实现语义图片分割功能

实现效果

第一张图为原图,其余的图为分割后的图形

代码实现:

# -*-coding:utf-8-*-
import numpy as np
import cv2

#----------------------------------------------------------------------
def obj_clip(img, foreground, border):
  result = []
  height ,width = np.shape(img)
  visited = set()
  for h in range(height):
    for w in range(width):
      if img[h,w] == foreground and not (h,w) in visited:
 obj = visit(img, height, width, h, w, visited, foreground, border)
 result.append(obj)
  return result
#----------------------------------------------------------------------
def visit(img, height, width, h, w, visited, foreground, border):
  visited.add((h,w))
  result = [(h,w)]
  if w > 0 and not (h, w-1) in visited:
    if img[h, w-1] == foreground: 
      result += visit(img, height, width, h, w-1, visited , foreground, border)
    elif border is not None and img[h, w-1] == border:
      result.append((h, w-1))
  if w < width-1 and not (h, w+1) in visited:
    if img[h, w+1] == foreground:
      result += visit(img, height, width, h, w+1, visited, foreground, border)
    elif border is not None and img[h, w+1] == border:
      result.append((h, w+1))
  if h > 0 and not (h-1, w) in visited:
    if img[h-1, w] == foreground:
      result += visit(img, height, width, h-1, w, visited, foreground, border)
    elif border is not None and img[h-1, w] == border:
      result.append((h-1, w))
  if h < height-1 and not (h+1, w) in visited:
    if img[h+1, w] == foreground :
      result += visit(img, height, width, h+1, w, visited, foreground, border) 
    elif border is not None and img[h+1, w] == border:
      result.append((h+1, w))
  return result
#----------------------------------------------------------------------
if __name__ == "__main__":
  import cv2
  import sys
  sys.setrecursionlimit(100000)
  img = np.zeros([400,400])
  cv2.rectangle(img, (10,10), (150,150), 1.0, 5)
  cv2.circle(img, (270,270), 70, 1.0, 5)
  cv2.line(img, (100,10), (100,150), 0.5, 5)
  #cv2.putText(img, "Martin",(200,200), 1.0, 5)
  cv2.imshow("img", img*255)
  cv2.waitKey(0)
  for obj in obj_clip(img, 1.0, 0.5):
    clip = np.zeros([400, 400])
    for h, w in obj:
      clip[h, w] = 0.2
    cv2.imshow("aa", clip*255)
    cv2.waitKey(0)

总结

到此这篇关于python 使用递归的方式实现语义图片分割的文章就介绍到这了,更多相关python 语义图片分割内容请搜索考高分网以前的文章或继续浏览下面的相关文章希望大家以后多多支持考高分网!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3214433.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-03
下一篇 2022-10-03

发表评论

登录后才能评论

评论列表(0条)

保存