当我们导入的模型含有自定义层或者自定义函数时,需要使用custom_objects来指定目标层或目标函数。
例如:
我的一个模型含有自定义层“SincConv1D”,需要使用下面的代码导入:
from keras.models import load_model
model = load_model('model.h5', custom_objects={'SincConv1D': SincConv1D})
如果不加custom_objects指定目标层Layer,则会出现以下报错:
ValueError: Unknown layer: SincConv1D
同样的,当我的模型含有自定义函数“my_loss”,需要使用下面的代码导入:
from keras.models import load_model
model = load_model('model.h5', custom_objects={'my_loss': my_loss})
补充知识:keras加载模型load_model报错——ValueError: Unknown layer: CRF
我就废话不多说了,大家还是直接看代码吧!
from keras.models import load_model
model = load_model(model_path)
会报错,需要在load_model函数中添加custom_objects参数,来声明自定义的层
(用keras搭建bilstm-crf,在训练模型时,使用的是:
from keras_contrib.layers.crf import CRF) from keras_contrib.layers.crf import CRF, crf_loss, crf_viterbi_accuracy model = load_model(model_path, custom_objects={"CRF": CRF, 'crf_loss': crf_loss, 'crf_viterbi_accuracy': crf_viterbi_accuracy})
以上这篇使用Keras加载含有自定义层或函数的模型 *** 作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持考高分网。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)