tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。
reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
- 第一个参数input_tensor: 输入的待降维的tensor;
- 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
- 第三个参数keep_dims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
- 第四个参数name: *** 作的名称;
- 第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;
以一个维度是2,形状是[2,3]的tensor举例:
import tensorflow as tf x = [[1,2,3], [1,2,3]] xx = tf.cast(x,tf.float32) mean_all = tf.reduce_mean(xx, keep_dims=False) mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False) mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False) with tf.Session() as sess: m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1]) print m_a # output: 2.0 print m_0 # output: [ 1. 2. 3.] print m_1 #output: [ 2. 2.]
如果设置保持原来的张量的维度,keep_dims=True ,结果:
print m_a # output: [[ 2.]] print m_0 # output: [[ 1. 2. 3.]] print m_1 #output: [[ 2.], [ 2.]]
类似函数还有:
- tf.reduce_sum :计算tensor指定轴方向上的所有元素的累加和;
- tf.reduce_max : 计算tensor指定轴方向上的各个元素的最大值;
- tf.reduce_all : 计算tensor指定轴方向上的各个元素的逻辑和(and运算);
- tf.reduce_any: 计算tensor指定轴方向上的各个元素的逻辑或(or运算);
到此这篇关于tensorflow中tf.reduce_mean函数的使用的文章就介绍到这了,更多相关tensorflow tf.reduce_mean内容请搜索考高分网以前的文章或继续浏览下面的相关文章希望大家以后多多支持考高分网!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)