基于pandas中expand的作用详解

基于pandas中expand的作用详解,第1张

基于pandas中expand的作用详解

expand表示是否把series类型转化为Dataframe类型

下面代码中的n表示去掉下划线"_"的数量

代码如下:

import numpy as np
import pandas as pd
s2 = pd.Series(['a_b_c_f_j', 'c_d_e_f_h', np.nan, 'f_g_h_x_g'])
print("-----------------------------------")
print(s2.str.split('_'))
print("-----------------------------------")
print(s2.str.split('_').str.get(1))
print("-----------------------------------")
print(s2.str.split('_').str[1])
print("---------------expand=True--------------------")
expand1=s2.str.split('_', expand=True)
print(expand1)
print(type(expand1))
print("---------------expand=False--------------------")
expand2=s2.str.split('_', expand=False)
print(expand2)
print(type(expand2))
print("##########################################################")
print("---------------expand=True,n=1--------------------")
expand1=s2.str.rsplit('_', expand=True,n=1)
print(expand1)
print("---------------expand=False,n=1--------------------")
expand2=s2.str.rsplit('_', expand=False,n=1)
print(expand2)
 

运行结果如下:

-----------------------------------
0  [a, b, c, f, j]
1  [c, d, e, f, h]
2 NaN
3  [f, g, h, x, g]
dtype: object
-----------------------------------
0   b
1   d
2  NaN
3   g
dtype: object
-----------------------------------
0   b
1   d
2  NaN
3   g
dtype: object
---------------expand=True--------------------
   0  1  2  3  4
0  a  b  c  f  j
1  c  d  e  f  h
2 NaN NaN NaN NaN NaN
3  f  g  h  x  g

---------------expand=False--------------------
0  [a, b, c, f, j]
1  [c, d, e, f, h]
2 NaN
3  [f, g, h, x, g]
dtype: object

##########################################################
---------------expand=True,n=1--------------------
     0  1
0 a_b_c_f  j
1 c_d_e_f  h
2   NaN NaN
3 f_g_h_x  g
---------------expand=False,n=1--------------------
0  [a_b_c_f, j]
1  [c_d_e_f, h]
2NaN
3  [f_g_h_x, g]
dtype: object
[Finished in 0.4s]

以上这篇基于pandas中expand的作用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持考高分网。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/3246024.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-04
下一篇 2022-10-04

发表评论

登录后才能评论

评论列表(0条)

保存