深度学习环境:
CUDA11.2
CUDnn8.1
Anaconda4.10
python3.8
tensorflow2.6
keras2.6
一、GAN网络的运行from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import adam_v2 import matplotlib.pyplot as plt import sys import os import numpy as np class GAN(): def __init__(self): # --------------------------------- # # 行28,列28,也就是mnist的shape # --------------------------------- # self.img_rows = 28 self.img_cols = 28 self.channels = 1 # 28,28,1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = 100 # adam优化器 optimizer = adam_v2.Adam(0.0002, 0.5) self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.generator = self.build_generator() gan_input = Input(shape=(self.latent_dim,)) img = self.generator(gan_input) # 在训练generate的时候不训练discriminator self.discriminator.trainable = False # 对生成的假图片进行预测 validity = self.discriminator(img) self.combined = Model(gan_input, validity) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) def build_generator(self): # --------------------------------- # # 生成器,输入一串随机数字 # --------------------------------- # model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(self): # ----------------------------------- # # 评价器,对输入进来的图片进行评价 # ----------------------------------- # model = Sequential() # 输入一张图片 model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) # 判断真伪 model.add(Dense(1, activation='sigmoid')) img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=128, sample_interval=50): # 获得数据 (X_train, _), (_, _) = mnist.load_data() # 进行标准化 X_train = X_train / 127.5 - 1. X_train = np.expand_dims(X_train, axis=3) # 创建标签 valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): # --------------------------- # # 随机选取batch_size个图片 # 对discriminator进行训练 # --------------------------- # idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) gen_imgs = self.generator.predict(noise) d_loss_real = self.discriminator.train_on_batch(imgs, valid) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------------- # # 训练generator # --------------------------- # noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) g_loss = self.combined.train_on_batch(noise, valid) print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) if epoch % sample_interval == 0: self.sample_images(epoch) def sample_images(self, epoch): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, self.latent_dim)) gen_imgs = self.generator.predict(noise) gen_imgs = 0.5 * gen_imgs + 0.5 fig, axs = plt.subplots(r, c) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') axs[i,j].axis('off') cnt += 1 fig.savefig("images/%d.png" % epoch) plt.close() if __name__ == '__main__': if not os.path.exists("./images"): os.makedirs("./images") gan = GAN() gan.train(epochs=30000, batch_size=256, sample_interval=200)
代码来自Bilibili up主Bubbliiiing提供的github仓库下载的。送你过去:Keras 搭建自己的GAN生成对抗网络平台(Bubbliiiing 深度学习 教程)_哔哩哔哩_bilibili
在problems中会有一些问题提示:
①库没有安装全,添加库就可以解决;
②导入提示错误,可能在不同的Tensorflow和Keras版本之间,有一些差别,比如:
from keras.optimizers import adam_v2 optimizer = adam_v2.Adam(0.0002, 0.5)
和
from keras.optimizers import Adam
类似这种问题在网上能够好找到解决方法。
二、运行CycleGANCycleGAN的代码也是在 Bubbliiiing 博主的github里面找到的,博主的B站,CSDN,github是一个名字,很好找的。
1、tensorflow显存不足因为CycleGAN网络中包含两个生成器,两个鉴别器,所以网络参数比较多。
解决方法请查看:tensorflow出现显存不足的提示_楠仔码头的博客-CSDN博客
该博客中提到的方法:①减少batchsize,即减少了GPU内存分配需求
②如果内存比较大的话,可以切换CPU
③重置输入图片尺寸,即通过减小图片的大小来减少对显存的消耗
我尝试了第三种,把输入图片尺寸改成了64*64*3,问题能够解决,而且也因为代码中的batchsize已经是1了,没办法再小了。
2、Anaconda中Qt5的路径问题解决方法请查看:python出现This application failed to stat could not find or load the Qt platform plugin "windows"_昆兰.沃斯 的博客-CSDN博客
博客中指出需要添加环境变量,在用户变量中新建:
输入变量名QT_QPA_PLATFORM_PLUGIN_PATH
变量值输入Anaconda安装目录下的.......plugins的路径,按照上面的路径应该能找到自己电脑上的plugins。我的就是按照上面博客中的路径找到的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)