我将对其进行重新设计以充当流式传输,而不是在一个块上。
一个更简单的方法是:
std::ifstream ifs("input.txt");std::vector<uint64_t> parsed(std::istream_iterator<uint64_t>(ifs), {});
如果您大致知道期望多少个值,那么预先使用
std::vector::reserve它可以进一步加快速度。
另外,您可以使用内存映射文件并遍历字符序列。
更新 我修改了上面的程序以将
uint32_ts 解析为向量。
使用4.5GiB [1] 的样本输入文件时,程序将在9秒 [2] 内运行:
sehe@desktop:/tmp$ make -B && sudo chrt -f 99 /usr/bin/time -f "%E elapsed, %c context switches" ./test smaller.txtg++ -std=c++0x -Wall -pedantic -g -O2 -march=native test.cpp -o test -lboost_system -lboost_iostreams -ltcmallocparse successtrailing unparsed: ''data.size(): 4026531840:08.96 elapsed, 6 context switches
当然,它至少分配402653184 * 4 字节= 1.5吉字节。因此,当您读取一个45
GB的文件时,您将需要大约15GiB的RAM来存储矢量(假设重新分配时没有碎片): 45GiB解析在45分钟内完成10分钟* :
make && sudo chrt -f 99 /usr/bin/time -f "%E elapsed, %c context switches" ./test 45gib_uint32s.txt make: Nothing to be done for `all'.tcmalloc: large alloc 17570324480 bytes == 0x2cb6000 @ 0x7ffe6b81dd9c 0x7ffe6b83dae9 0x401320 0x7ffe6af4cec5 0x40176f (nil)Parse successTrailing unparsed: 1 charactersData.size(): 4026531840Time taken by parsing: 644.64s10:45.96 elapsed, 42 context switches
相比之下,仅运行
wc -l 45gib_uint32s.txt就花费了大约12分钟(尽管没有实时优先级调度)。
wc是 极快完整代码用于基准测试
#include <boost/spirit/include/qi.hpp>#include <boost/iostreams/device/mapped_file.hpp>#include <chrono>namespace qi = boost::spirit::qi;typedef std::vector<uint32_t> data_t;using hrclock = std::chrono::high_resolution_clock;int main(int argc, char** argv) { if (argc<2) return 255; data_t data; data.reserve(4392580288); // for the 45 GiB file benchmark // data.reserve(402653284); // for the 4.5 GiB file benchmark boost::iostreams::mapped_file mmap(argv[1], boost::iostreams::mapped_file::readonly); auto f = mmap.const_data(); auto l = f + mmap.size(); using namespace qi; auto start_parse = hrclock::now(); bool ok = phrase_parse(f,l,int_parser<uint32_t, 10>() % eol, blank, data); auto stop_time = hrclock::now(); if (ok)std::cout << "Parse successn"; else std::cerr << "Parse failed at #" << std::distance(mmap.const_data(), f) << " around '" << std::string(f,f+50) << "'n"; if (f!=l) std::cerr << "Trailing unparsed: " << std::distance(f,l) << " charactersn"; std::cout << "Data.size(): " << data.size() << "n"; std::cout << "Time taken by parsing: " << std::chrono::duration_cast<std::chrono::milliseconds>(stop_time-start_parse).count() / 1000.0 << "sn";}
[1] 产生
od -t u4 /dev/urandom -A none -v -w4 | pv | dd bs=1Mcount=$((9*1024/2)) iflag=fullblock > smaller.txt
[2] 显然,这与在Linux上的缓冲区缓存中缓存的文件有关–大文件没有此好处
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)