如果您正在寻找一种更通用的方法来从json展开多个层次结构,则可以使用
recursion并列出理解来重塑数据。下面介绍了一种替代方法:
def flatten_json(nested_json, exclude=['']): """Flatten json object with nested keys into a single level. Args: nested_json: A nested json object. exclude: Keys to exclude from output. Returns: The flattened json object if successful, None otherwise. """ out = {} def flatten(x, name='', exclude=exclude): if type(x) is dict: for a in x: if a not in exclude: flatten(x[a], name + a + '_') elif type(x) is list: i = 0 for a in x: flatten(a, name + str(i) + '_') i += 1 else: out[name[:-1]] = x flatten(nested_json) return out
然后,您可以独立于嵌套级别将其应用于数据:
新样本数据
this_dict = {'events': [ {'id': 142896214, 'playerId': 37831, 'teamId': 3157, 'matchId': 2214569, 'matchPeriod': '1H', 'eventSec': 0.8935539999999946, 'eventId': 8, 'eventName': 'Pass', 'subEventId': 85, 'subEventName': 'Simple pass', 'positions': [{'x': 51, 'y': 49}, {'x': 40, 'y': 53}], 'tags': [{'id': 1801, 'tag': {'label': 'accurate'}}]}, {'id': 142896214, 'playerId': 37831, 'teamId': 3157, 'matchId': 2214569, 'matchPeriod': '1H', 'eventSec': 0.8935539999999946, 'eventId': 8, 'eventName': 'Pass', 'subEventId': 85, 'subEventName': 'Simple pass', 'positions': [{'x': 51, 'y': 49}, {'x': 40, 'y': 53},{'x': 51, 'y': 49}], 'tags': [{'id': 1801, 'tag': {'label': 'accurate'}}]}]}
用法
pd.Dataframe([flatten_json(x) for x in this_dict['events']])Out[1]: id playerId teamId matchId matchPeriod eventSec eventId 142896214 37831 3157 2214569 1H 0.893554 8 1 142896214 37831 3157 2214569 1H 0.893554 8 eventName subEventId subEventName positions_0_x positions_0_y Pass 85 Simple pass 51 49 1 Pass 85 Simple pass 51 49 positions_1_x positions_1_y tags_0_id tags_0_tag_label positions_2_x 40 53 1801 accurate NaN 1 40 53 1801 accurate51.0 positions_2_y 0 NaN 149.0
请注意,该
flatten_json代码不是我的代码,我在这里和这里都看到了它,而对原始源代码的不确定性很高。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)