flink任务部署使用基于k8s的standalone集群,先在容器上部署flink集群再提交flink任务,其中flink任务的提交与taskmanager的创建、注册是同时进行的。
二、问题如果集群有35个taskmanager,140个slot,其中一个Vertex的并行度<140,属于该vertex的task在taskmanager上分布不均,导致节点负载不均衡。
如下所示,
-
该flink拓扑拥有5个vertex,其中两个vertex并行度为140,其他三个并行度根据kafka分区数设置为:10、30、35。任务最大并行度为140,任务资源配置为:35个【4core 8gb】的taskManager节点。
-
通过web ui可发现,即使配置了cluster.evenly-spread-out-slots:true,另外三个vertex的task依然会被调度到同个taskmanager上。
- 上诉问题可以简化为:
假设一个任务拓扑逻辑为:Vertex A(p=2)->Vertex B(p=4)->Vertex C(p=2)。
基于slot共享和本地数据传输优先的划分策略,划分为四个ExecutionSlotSharingGroup:{A1,B1,C1}、{A2,B2,C2}、{B3}、{B4},
如果资源配置将每个Taskmanager划分为2个Slot,就可能出现以下分配:
当前Slot划分是平均划分内存,对cpu没有做限制。上诉分配会导致节点负载不均衡,若A、C Task计算资源耗费较多,TaskManager1将会成为计算的瓶颈,理想情况下我们希望分配方式是:
- 为ExecutionSlotSharingGroup申请slot时先对其按包含Task个数排序,优先调度Task个数多的分组
- 延缓任务调度,等注册TaskManager个数足够大ExecutionSlotSharingGroup平均分配再为其申请Slot
- 优化后task调度情况:同个vertex的多个task均匀调度到不同的taskmanager节点上
-
优化前: 节点间CPU负载较为分散,部分节点长时间处于100%高负载状态
-
优化后: 节点间CPU负载较为集中,节点不会长时间处于100%负载状态
优化后数据积压量比之前少一半,同资源情况下处理能力更佳,数据延迟更低。
- 优化前:
- 优化后:
对于拓扑:Vertex A(p=3)->Vertex B(p=4)->Vertex C(p=1)。将会按以下分配
Vertex B->Vertex C存在四条数据传输通道(B1->C1)、(B2->C1)、(B3->C1)、(B4->C1),对于非forward的连接,无论subtask分配到哪个group中,至少都存在三条通道需要跨节点通讯。
那么如果在分组的时候就先对task做一次均衡: {A1,B1}、{A3,B3}、{A2,B2}、{B4,C1},后面无论怎么调度都会均衡。
在flink生成执行计划时期根据拓扑逻辑生成延迟的策略,减少用户 *** 作感知
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)