-
@param raw
-
@return
*/
public static SingleMessage parse(String r
【一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义】 浏览器打开:qq.cn.hn/FTf 免费领取
aw){
SingleMessage singleMessage = null;
if (raw != null) {
singleMessage = JSONObject.parseObject(raw, SingleMessage.class);
}
return singleMessage;
}
}
- SingleMessage对象的定义:
public class SingleMessage {
private long timeLong;
private String name;
private String bizID;
private String time;
private String message;
public long getTimeLong() {
return timeLong;
}
public void setTimeLong(long timeLong) {
this.timeLong = timeLong;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getBizID() {
return bizID;
}
public void setBizID(String bizID) {
this.bizID = bizID;
}
public String getTime() {
return time;
}
public void setTime(String time) {
this.time = time;
}
public String getMessage() {
return message;
}
public void setMessage(String message) {
this.message = message;
}
}
- 实时处理的 *** 作都集中在StreamingJob类,源码的关键位置已经加了注释,就不再赘述了:
package com.bolingcavalry;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import javax.annotation.Nullable;
import java.util.Properties;
public class StreamingJob {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(5000); // 要设置启动检查点
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
Properties props = new Properties();
props.setProperty(“bootstrap.servers”, “kafka1:9092”);
props.setProperty(“group.id”, “flink-group”);
//数据源配置,是一个kafka消息的消费者
FlinkKafkaConsumer011 consumer =
new FlinkKafkaConsumer011<>(“topic001”, new SimpleStringSchema(), props);
//增加时间水位设置类
consumer.assignTimestampsAndWatermarks(new AssignerWithPunctuatedWatermarks (){
@Override
public long extractTimestamp(String element, long previousElementTimestamp) {
return JSONHelper.getTimeLongFromRawMessage(element);
}
@Nullable
@Override
public Watermark checkAndGetNextWatermark(String lastElement, long extractedTimestamp) {
if (lastElement != null) {
return new Watermark(JSONHelper.getTimeLongFromRawMessage(lastElement));
}
return null;
}
});
env.addSource(consumer)
//将原始消息转成Tuple2对象,保留用户名称和访问次数(每个消息访问次数为1)
.flatMap((FlatMapFunction
SingleMessage singleMessage = JSONHelper.parse(s);
if (null != singleMessage) {
collector.collect(new Tuple2<>(singleMessage.getName(), 1L));
}
})
//以用户名为key
.keyBy(0)
//时间窗口为2秒
.timeWindow(Time.seconds(2))
//将每个用户访问次数累加起来
.apply((WindowFunction
long sum = 0L;
for (Tuple2
sum += record.f1;
}
Tuple2
result.f1 = sum;
out.collect(result);
})
//输出方式是STDOUT
.print();
env.execute(“Flink-Kafka demo”);
}
}
- 在pom.xml所在文件夹执行以下命令打包:
mvn clean package -Dmaven.test.skip=true -U
- 打包成功后,会在target目录下生成文件flinkkafkademo-1.0-SNAPSHOT.jar,将此文件提交到Flinkserver上,如下图:
- 点击下图红框中的"Upload"按钮:
- 如下图,选中刚刚上传的文件,填写类名,再点击"Submit"按钮即可启动Job:
- 如下图,在Overview页面可见正在运行的任务:
现在所有服务都准备完毕,可以生产消息验证了;
[]()在机器192.168.1.104上发起压力测试,产生大量消息
- 登录部署了Apache Bench的机器,执行以下命令:
ab -n 10000 -c 2 http://192.168.1.101:8080/send/Jack/hello
192.168.1.101是消息生产者的web服务的地址,上述命令发起了并发数为2的压力测试,一共会发起一万次请求;
- 压力测试完毕后,在Flink的Task Managers页面的Stdout页可以见到实时计算的统计数据,如下图:
至此,Flink消费kafka消息的实战就全部完成了,本次实战从消息产生到实时处理全部实现,希望在您构建基于kafak的实时计算环境时可以提供一些参考;
[]()欢迎关注我的公众号:程序员欣宸
力测试,一共会发起一万次请求;
- 压力测试完毕后,在Flink的Task Managers页面的Stdout页可以见到实时计算的统计数据,如下图:
至此,Flink消费kafka消息的实战就全部完成了,本次实战从消息产生到实时处理全部实现,希望在您构建基于kafak的实时计算环境时可以提供一些参考;
[]()欢迎关注我的公众号:程序员欣宸
[外链图片转存中…(img-VWTAXgom-1636031805915)]
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)