docker-compose简单部署prometheus+grafana及相关应用监控实现

docker-compose简单部署prometheus+grafana及相关应用监控实现,第1张

docker-compose简单部署prometheus+grafana及相关应用监控实现

目录

前言

一、Prometheus + Grafana部署

二、监控数据源配置

二、监控服务配置

三、监控报警配置

总结


前言

Prometheus:抓取metrics(指标)数据,然后进行存储

Grafana:提供各种模板或自定义界面展示数据


一、Prometheus + Grafana部署
  1. 创建docker-compose.yml

     version: '2'
            networks:
              monitor:
                driver: bridge
            #配置应用
            services:
              #监控服务
              prometheus:
                image: prom/prometheus
                container_name: prometheus
                hostname: prometheus
                restart: always
                volumes:
                  - /mydata/pan/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml
                  - /mydata/pan/node_down/node_down.yml:/etc/prometheus/node_down.yml
                ports:
                  - "9090:9090"
                networks:
                  - monitor
              #报警插件
              alertmanager:
                image: prom/alertmanager
                container_name: alertmanager
                hostname: alertmanager
                restart: always
                volumes:
                  - /mydata/pan/alertmanager/alertmanager.yml:/etc/alertmanager/alertmanager.yml
                ports:
                  - "9093:9093"
                networks:
                  - monitor
              #界面展示
              grafana:
                image: grafana/grafana
                container_name: grafana
                hostname: grafana
                restart: always
                ports:
                  - "3000:3000"
                networks:
                  - monitor
              #获取服务器信息
              node-exporter:
                image: quay.io/prometheus/node-exporter
                container_name: node-exporter
                hostname: node-exporter
                restart: always
                ports:
                  - "9100:9100"
                networks:
                  - monitor
              #监控docker容器服务
              cadvisor:
                image: google/cadvisor:latest
                container_name: cadvisor
                hostname: cadvisor
                restart: always
                volumes:
                  - /:/rootfs:ro
                  - /var/run:/var/run:rw
                  - /sys:/sys:ro
                  - /var/lib/docker/:/var/lib/docker:ro
                ports:
                  - "8080:8080"
                networks:
                  - monitor
  2. 创建alertmanager.yml,配置收发邮件邮箱

    global:
      smtp_smarthost: 'smtp.qq.com:465'    #qq服务器
      smtp_from: 'xxxx@qq.com'      #发邮件的邮箱
      smtp_auth_username: 'xxxx@qq.com'   #发邮件的邮箱用户名,也就是你的邮箱
      smtp_auth_password: 'xxxxx'     #发邮件的邮箱密码
      smtp_require_tls: false      #不进行tls验证
    
    route:
      group_by: ['alertname']
      group_wait: 10s
      group_interval: 10s
      repeat_interval: 10m
      receiver: live-monitoring
    
    receivers:
      - name: 'live-monitoring'
        email_configs:
          - to: 'xxxx@qq.com'     #收邮件的邮箱     
  3. 创建prometheus.yml

    global:
      scrape_interval:     15s # 设置间隔15s,默认1分钟.
      evaluation_interval: 15s # 每15秒评估一次规则, 默认1分钟.
    
    #设置报警插件
    alerting:
      alertmanagers:
        - static_configs:
            - targets: ['192.168.2.170:9093']
              # - alertmanager:9093
    
    # 加载规则一次,并根据全局规则定期对其进行评估'evaluation_interval'.
    rule_files:
      - "node_down.yml"
      # - "first_rules.yml"
      # - "second_rules.yml"
    
    # 监控配置:
    scrape_configs:
      - job_name: 'prometheus'
        static_configs:
        - targets: ['192.168.2.170:9090']
    
      - job_name: 'cadvisor'
        static_configs:
        - targets: ['192.168.2.170:8080']
    
      - job_name: 'node'
        scrape_interval: 8s
        static_configs:
        - targets: ['192.168.2.170:9100']
  4. 添加报警规则 node_down.yml (node_down.yml为 prometheus targets 监控)

    groups:
      - name: node_down
        rules:
          - alert: InstanceDown
            expr: up == 0
            for: 1m
            labels:
              user: test
            annotations:
              summary: "Instance {{ $labels.instance }} down"
              description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 1 minutes."
  5. 运行docker-compose

    #拉取镜像,创建容器运行
    docker-compose up -d
    #删除容器,停止运行
    docker-compose down
  6. 查看运行结果及网址访问

    Promethus地址:http://192.168.2.170:9090/targets

    grafana地址:http://192.168.2.170:3000

    (第一次访问:账户密码均为 admin ,登陆后第一次可进行设置密码)

        

二、监控数据源配置

        打开grafana,创建数据源 promethus (按需可配置其他数据源,如mysql,Elasticsearch等)

        选择Prometheus 2.0 Stats

        填入promethus地址

        保存

二、监控服务配置

        grafana模板查看及下载地址:Grafana: The open observability platform | Grafana Labs

  1. 服务器监控(模板代号:8919)

    需监控的服务器上需安装node-exporter
    version: '2'
    networks:
      monitor:
        driver: bridge
    services:
        node-exporter:
          image: quay.io/prometheus/node-exporter
          container_name: node-exporter
          hostname: node-exporter
          restart: always
          ports:
            - "9100:9100"
          networks:
            - monitor
    配置prometheus.yml文件,在targets中加入不同服务所在的ip:端口(端口为node-exporter的端口
    scrape_configs:
      - job_name: 'node'
        scrape_interval: 8s
        static_configs:
          - targets: ['192.168.2.170:9100','192.168.2.169:9100','192.168.1.69:9100']
    重启prometheus服务,访问http://192.168.2.170:9090/targets 查看是否正确运行

    效果如下



     
  2. docker监控(模板代号:193)

    需要在服务器上安装cadvisor服务
     
    version: '2'
    networks:
      monitor:
        driver: bridge
    services:
        cadvisor:
          image: google/cadvisor:latest
          container_name: cadvisor
          hostname: cadvisor
          restart: always
          volumes:
            - /:/rootfs:ro
            - /var/run:/var/run:rw
            - /sys:/sys:ro
            - /var/lib/docker/:/var/lib/docker:ro
          ports:
            - "8080:8080"
          networks:
            - monitor
    配置prometheus.yml文件,在targets中加入不同docker服务所在的ip:端口(端口为cadvisor的端口)
    scrape_configs:
      - job_name: 'cadvisor'
        static_configs:
          - targets: ['192.168.2.170:8080','192.168.2.169:8080','192.168.1.69:8080']
    重启prometheus服务,访问http://192.168.2.170:9090/targets 查看是否正确运行


    打开grafana,选择docker监控模板,进行设置,添加筛选条件


    效果如下



     
  3. 监控springboot 项目(模板代号:4701)


    spirng项目pom中引入 相关依赖
    
        org.springframework.boot
        spring-boot-starter-actuator
    
    
    
    
        io.micrometer
        micrometer-registry-prometheus
    
    项目application文件中加入以下配置
    spring:
      application:
        name: test
    server:
      port: 11111    
    management:
      endpoints:
        web:
          exposure:
            # 将 Actuator 的 /actuator/prometheus 端点暴露出来
            include: 'prometheus'
      metrics:
        tags:
          application: ${spring.application.name}
    注意:项目中若有家权限框架,请将路径/actuator/prometheus 加入白名单

    启动项目,控制台输出有以下内容即表示成功
     
    o.s.b.a.e.web.EndpointlinksResolver      : Exposing 1 endpoint(s) beneath base path '/actuator'
    配置prometheus.yml文件
    scrape_configs:
      - job_name: '自定义名称'
          scrape_interval: 5s
          metrics_path: '/xxxx/actuator/prometheus'  #若项目中有配置server.servlet.context-path,则加上对应xxxx路径
          static_configs:
            - targets: ['192.168.1.69:18077','192.168.1.69:18078']
    重启prometheus服务,访问http://192.168.2.170:9090/targets 查看是否正确运行


    查看效果



     
  4. 监控mysql(模板代号:7362)

         在需监控mysql的服务器安装 mysqld-exporter,编辑docker-compose文件

services:
    mysqld-exporter:
      image: prom/mysqld-exporter
      container_name: mysqld-exporter
      hostname: mysqld-exporter
      restart: always
      ports:
        - "9104:9104"
      environment:
        - DATA_SOURCE_NAME=root:root@(192.168.2.169:3306)/  #username:password@(ip:端口)
      networks:
        - monitor

         配置prometheus.yml文件

scrape_configs:
  - job_name: 'mysql-exporter'
    scrape_interval: 5s
    static_configs:
      - targets: ['192.168.2.170:9104']   

         重启prometheus服务,访问http://192.168.2.170:9090/targets 查看是否正确运行

         效果如下

 

三、监控报警配置

后续补充....


总结

监控流程总体上是,prometheus的配置文件中配置如何获取信息,进行保存,然后grafana配置对应prometheus的数据源,选择合适的模板,进行数据展示。

以上文章仅作为个人学习累积,以便回顾

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5436312.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-11
下一篇 2022-12-11

发表评论

登录后才能评论

评论列表(0条)

保存