在网上找的资源,效果不佳,等清楚了函数和原理再细改,调试效果。
# -*- coding : UTF-8 -*- # @file : regist.py # @Time : 2021-11-12 17:00 # @Author : wmz import SimpleITK as sitk # Utility method that either downloads data from the MIDAS repository or # if already downloaded returns the file name for reading from disk (cached data). # %run update_path_to_download_script # from downloaddata import fetch_data as fdata # Always write output to a separate directory, we don't want to pollute the source directory. import os OUTPUT_DIR = 'Output' import matplotlib.pyplot as plt # % matplotlib # inline from ipywidgets import interact, fixed from IPython.display import clear_output # Callback invoked by the interact IPython method for scrolling through the image stacks of # the two images (moving and fixed). def display_images(fixed_image_z, moving_image_z, fixed_npa, moving_npa): # Create a figure with two subplots and the specified size. plt.subplots(1, 2, figsize=(10, 8)) # Draw the fixed image in the first subplot. plt.subplot(1, 2, 1) plt.imshow(fixed_npa[fixed_image_z, :, :], cmap=plt.cm.Greys_r); plt.title('fixed image') plt.axis('off') # Draw the moving image in the second subplot. plt.subplot(1, 2, 2) plt.imshow(moving_npa[moving_image_z, :, :], cmap=plt.cm.Greys_r); plt.title('moving image') plt.axis('off') plt.show() # Callback invoked by the IPython interact method for scrolling and modifying the alpha blending # of an image stack of two images that occupy the same physical space. def display_images_with_alpha(image_z, alpha, fixed, moving): img = (1.0 - alpha) * fixed[:, :, image_z] + alpha * moving[:, :, image_z] plt.imshow(sitk.GetArrayViewFromImage(img), cmap=plt.cm.Greys_r); plt.axis('off') plt.show() # Callback invoked when the StartEvent happens, sets up our new data. def start_plot(): global metric_values, multires_iterations metric_values = [] multires_iterations = [] # Callback invoked when the EndEvent happens, do cleanup of data and figure. def end_plot(): global metric_values, multires_iterations del metric_values del multires_iterations # Close figure, we don't want to get a duplicate of the plot latter on. plt.close() # Callback invoked when the IterationEvent happens, update our data and display new figure. def plot_values(registration_method): global metric_values, multires_iterations metric_values.append(registration_method.GetMetricValue()) # Clear the output area (wait=True, to reduce flickering), and plot current data clear_output(wait=True) # Plot the similarity metric values plt.plot(metric_values, 'r') plt.plot(multires_iterations, [metric_values[index] for index in multires_iterations], 'b*') plt.xlabel('Iteration Number', fontsize=12) plt.ylabel('Metric Value', fontsize=12) plt.show() # Callback invoked when the sitkMultiResolutionIterationEvent happens, update the index into the # metric_values list. def update_multires_iterations(): global metric_values, multires_iterations multires_iterations.append(len(metric_values)) fixed_image = sitk.ReadImage(r"E:Dataright_knee1-YCQ-cl-L.nrrd", sitk.sitkFloat32) moving_image = sitk.ReadImage(r"E:Dataright_knee2-LAXI-r-cl lv.nrrd", sitk.sitkFloat32) interact(display_images, fixed_image_z=(0,fixed_image.GetSize()[2]-1), moving_image_z=(0,moving_image.GetSize()[2]-1), fixed_npa = fixed(sitk.GetArrayViewFromImage(fixed_image)), moving_npa=fixed(sitk.GetArrayViewFromImage(moving_image))); initial_transform = sitk.CenteredTransformInitializer(fixed_image, moving_image, sitk.Euler3DTransform(), sitk.CenteredTransformInitializerFilter.GEOMETRY) moving_resampled = sitk.Resample(moving_image, fixed_image, initial_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID()) interact(display_images_with_alpha, image_z=(0,fixed_image.GetSize()[2]), alpha=(0.0,1.0,0.05), fixed = fixed(fixed_image), moving=fixed(moving_resampled)); registration_method = sitk.ImageRegistrationMethod() # Similarity metric settings. registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50) registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(0.01) registration_method.SetInterpolator(sitk.sitkLinear) # Optimizer settings. registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, numberOfIterations=100, convergenceMinimumValue=1e-6, convergenceWindowSize=10) registration_method.SetOptimizerScalesFromPhysicalShift() # Setup for the multi-resolution framework. registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1]) registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2,1,0]) registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() # Don't optimize in-place, we would possibly like to run this cell multiple times. registration_method.SetInitialTransform(initial_transform, inPlace=False) # Connect all of the observers so that we can perform plotting during registration. registration_method.AddCommand(sitk.sitkStartEvent, start_plot) registration_method.AddCommand(sitk.sitkEndEvent, end_plot) registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent, update_multires_iterations) registration_method.AddCommand(sitk.sitkIterationEvent, lambda: plot_values(registration_method)) final_transform = registration_method.Execute(sitk.Cast(fixed_image, sitk.sitkFloat32), sitk.Cast(moving_image, sitk.sitkFloat32)) print('Final metric value: {0}'.format(registration_method.GetMetricValue())) print('Optimizer's stopping condition, {0}'.format(registration_method.GetOptimizerStopConditionDescription())) moving_resampled = sitk.Resample(moving_image, fixed_image, final_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID()) interact(display_images_with_alpha, image_z=(0,fixed_image.GetSize()[2]), alpha=(0.0,1.0,0.05), fixed = fixed(fixed_image), moving=fixed(moving_resampled)); sitk.WriteImage(moving_resampled, os.path.join(OUTPUT_DIR, 'RIRE_training_001_mr_T1_resampled.mha')) sitk.WriteTransform(final_transform, os.path.join(OUTPUT_DIR, 'RIRE_training_001_CT_2_mr_T1.tfm'))
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)