我建立了一个手动解决方案。为了提高效率,我丢弃了所有xarray并手动重建索引和值。使用更多xarray的任何更改(例如,使用
sel,将单元重新包装到DataArray中;另请参见https://github.com/pydata/xarray/issues/2452)导致速度严重降低。
import itertoolsfrom collections import defaultdictimport numpy as npimport xarray as xrfrom xarray import DataArrayclass DataAssembly(DataArray): def multi_dim_groupby(self, groups, apply): # align groups = sorted(groups, key=lambda group: self.dims.index(self[group].dims[0])) # build indices groups = {group: np.unique(self[group]) for group in groups} group_dims = {self[group].dims: group for group in groups} indices = defaultdict(lambda: defaultdict(list)) result_indices = defaultdict(dict) for group in groups: for index, value in enumerate(self[group].values): indices[group][value].append(index) if value not in result_indices[group]: # if captured once, it will be "grouped away" index = max(result_indices[group].values()) + 1 if len(result_indices[group]) > 0 else 0 result_indices[group][value] = index coords = {coord: (dims, value) for coord, dims, value in walk_coords(self)} def simplify(value): return value.item() if value.size == 1 else value def indexify(dict_indices): return [(i,) if isinstance(i, int) else tuple(i) for i in dict_indices.values()] # group and apply # making this a DataArray right away and then inserting through .loc would slow things down result = np.zeros([len(indices) for indices in result_indices.values()]) result_coords = {coord: (dims, [None] * len(result_indices[group_dims[dims]])) for coord, (dims, value) in coords.items()} for values in itertools.product(*groups.values()): group_values = dict(zip(groups.keys(), values)) self_indices = {group: indices[group][value] for group, value in group_values.items()} values_indices = indexify(self_indices) cells = self.values[values_indices] # using DataArray would slow things down. thus we pass coords as kwargs cells = simplify(cells) cell_coords = {coord: (dims, value[self_indices[group_dims[dims]]]) for coord, (dims, value) in coords.items()} cell_coords = {coord: (dims, simplify(np.unique(value))) for coord, (dims, value) in cell_coords.items()} # ignore dims when passing to function passed_coords = {coord: value for coord, (dims, value) in cell_coords.items()} merge = apply(cells, **passed_coords) result_idx = {group: result_indices[group][value] for group, value in group_values.items()} result[indexify(result_idx)] = merge for coord, (dims, value) in cell_coords.items(): if isinstance(value, np.ndarray): # multiple values for coord -> ignore if coord in result_coords: # delete from result coords if not yet deleted del result_coords[coord] continue assert dims == result_coords[coord][0] coord_index = result_idx[group_dims[dims]] result_coords[coord][1][coord_index] = value # re-package result = type(self)(result, coords=result_coords, dims=list(itertools.chain(*group_dims.keys()))) return resultdef walk_coords(assembly): """ walks through coords and all levels, just like the `__repr__` function, yielding `(name, dims, values)`. """ coords = {} for name, values in assembly.coords.items(): # partly borrowed from xarray.core.formatting#summarize_coord is_index = name in assembly.dims if is_index and values.variable.level_names: for level in values.variable.level_names: level_values = assembly.coords[level] yield level, level_values.dims, level_values.values else: yield name, values.dims, values.values return coords
该方法
multi_dim_groupby执行分组并一步应用。传递的
apply方法可以通过以坐标命名的参数接受组坐标(或通过放入
**_函数标头忽略该坐标)。
它不是特别漂亮,不能涵盖所有可能的情况,但至少涵盖以下测试用例:
import DataAssemblyclass TestMultiDimGroupby: def test_unique_values(self): d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], coords={'a': ['a', 'b', 'c', 'd'],'b': ['x', 'y', 'z']}, dims=['a', 'b']) g = d.multi_dim_groupby(['a', 'b'], lambda x, **_: x) assert g.equals(d) def test_nonunique_singledim(self): d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], coords={'a': ['a', 'a', 'b', 'b'],'b': ['x', 'y', 'z']}, dims=['a', 'b']) g = d.multi_dim_groupby(['a', 'b'], lambda x, **_: x.mean()) assert g.equals(DataAssembly([[2.5, 3.5, 4.5], [8.5, 9.5, 10.5]], coords={'a': ['a', 'b'], 'b': ['x', 'y', 'z']}, dims=['a', 'b'])) def test_nonunique_adjacentcoord(self): d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], coords={'a': ('adim', ['a', 'a', 'b', 'b']),'aa': ('adim', ['a', 'b', 'a', 'b']),'b': ['x', 'y', 'z']}, dims=['adim', 'b']) g = d.multi_dim_groupby(['a', 'b'], lambda x, **_: x.mean()) assert g.equals(DataAssembly([[2.5, 3.5, 4.5], [8.5, 9.5, 10.5]], coords={'adim': ['a', 'b'], 'b': ['x', 'y', 'z']}, dims=['adim', 'b'])), "adjacent coord aa should be discarded due to non-mappability" def test_unique_values_swappeddims(self): d = DataAssembly([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], coords={'a': ['a', 'b', 'c', 'd'],'b': ['x', 'y', 'z']}, dims=['a', 'b']) g = d.multi_dim_groupby(['b', 'a'], lambda x, **_: x) assert g.equals(d)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)