CNN by Python

CNN by Python,第1张

CNN by Python

 

input.jpeg 

import numpy
from skimage import io
import skimage.data
import matplotlib.pyplot as plt
import numpy
import sys

def conv(img, conv_filter):
    if len(img.shape) > 2 or len(conv_filter.shape) > 3:
        if img.shape[-1] != conv_filter.shape[-1]:
            print("Error: Number of channels in both image and filter must match.")
            sys.exit()
    if conv_filter.shape[1] != conv_filter.shape[2]:
        print('Error: Filter must be a square matrix.')
        sys.exit()
    if conv_filter.shape[1]%2==0:
        print('Error: Filter must have an odd size.')
        sys.exit()

    feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,
                                                                    img.shape[1]-conv_filter.shape[1]+1,
                                                                    conv_filter.shape[0]))
    for filter_num in range(conv_filter.shape[0]):
        print("Filter ", filter_num + 1)
        curr_filter = conv_filter[filter_num, :]
        if len(curr_filter.shape) > 2:
            conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])
            for ch_num in range(1, curr_filter.shape[-1]):
                conv_map = conv_map + conv_(img[:, :, ch_num],curr_filter[:, :, ch_num])
        else:
            conv_map = conv_(img, curr_filter)
        feature_maps[:, :, filter_num] = conv_map
    return feature_maps

def conv_(img, conv_filter):
    filter_size = conv_filter.shape[0]
    result = numpy.zeros((img.shape))
    for r in numpy.uint16(numpy.arange(filter_size/2, img.shape[0]-filter_size/2-2)):
        for c in numpy.uint16(numpy.arange(filter_size/2, img.shape[1]-filter_size/2-2)):
            curr_region = img[r:r+filter_size, c:c+filter_size]
            curr_result = curr_region * conv_filter
            conv_sum = numpy.sum(curr_result)
            result[r, c] = conv_sum
    final_result = result[numpy.uint16(filter_size/2):result.shape[0]-numpy.uint16(filter_size/2),
                                              numpy.uint16(filter_size/2):result.shape[1]-numpy.uint16(filter_size/2)]
    return final_result

def relu(feature_map):
    relu_out = numpy.zeros(feature_map.shape)
    for map_num in range(feature_map.shape[-1]):
        for r in numpy.arange(0, feature_map.shape[0]):
            for c in numpy.arange(0, feature_map.shape[1]):
                relu_out[r, c, map_num] = numpy.max(feature_map[r, c, map_num], 0)
    return relu_out

def pooling(feature_map, size, stride):
    pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0] - size + 1) / stride),
                                                          numpy.uint16((feature_map.shape[1] - size+1) / stride),
                                                          feature_map.shape[-1]))
    for map_num in range(feature_map.shape[-1]):
        r2 = 0
        for r in numpy.arange(0, feature_map.shape[0]-size-1, stride):
            c2 = 0
            for c in numpy.arange(0, feature_map.shape[1]-size-1, stride):
                pool_out[r2, c2, map_num] = numpy.max(feature_map[r:r+size,  c:c+size])
                c2 = c2 + 1
            r2 = r2 + 1
    return pool_out


img0 = io.imread('input.jpeg')
img = skimage.color.rgb2gray(img0)

# First conv layer
l1_filter = numpy.zeros((2, 3, 3))
l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])
print("**Working with conv layer 1**")
l1_feature_map = conv(img, l1_filter)
print("**ReLU**")
l1_feature_map_relu = relu(l1_feature_map)
print("**Pooling**")
l1_feature_map_relu_pool = pooling(l1_feature_map_relu, 2, 2)
print("**End of conv layer 1**n")

# Second conv layer
l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
print("**Working with conv layer 2**")
l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)
print("**ReLU**")
l2_feature_map_relu = relu(l2_feature_map)
print("**Pooling**")
l2_feature_map_relu_pool = pooling(l2_feature_map_relu, 2, 2)
print("**End of conv layer 2**n")

# Third conv layer
l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
print("**Working with conv layer 3**")
l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)
print("**ReLU**")
l3_feature_map_relu = relu(l3_feature_map)
print("**Pooling**")
l3_feature_map_relu_pool = pooling(l3_feature_map_relu, 2, 2)
print("**End of conv layer 3**n")

plt.figure(1)
plt.subplot(4,2,1)
plt.imshow(img0)
plt.subplot(4,2,2)
plt.imshow(img,cmap='gray')
plt.subplot(4,2,3)
plt.imshow(l1_feature_map[:,:,0],cmap='gray')
plt.subplot(4,2,4)
plt.imshow(l1_feature_map[:,:,1],cmap='gray')
plt.subplot(4,2,5)
plt.imshow(l1_feature_map_relu[:,:,0],cmap='gray')
plt.subplot(4,2,6)
plt.imshow(l1_feature_map_relu[:,:,1],cmap='gray')
plt.subplot(4,2,7)
plt.imshow(l1_feature_map_relu_pool[:,:,0],cmap='gray')
plt.subplot(4,2,8)
plt.imshow(l1_feature_map_relu_pool[:,:,1],cmap='gray')

plt.figure(2)
plt.subplot(3,2,1)
plt.imshow(l2_feature_map[:,:,0],cmap='gray')
plt.subplot(3,2,2)
plt.imshow(l2_feature_map[:,:,1],cmap='gray')
plt.subplot(3,2,3)
plt.imshow(l2_feature_map_relu[:,:,0],cmap='gray')
plt.subplot(3,2,4)
plt.imshow(l2_feature_map_relu[:,:,1],cmap='gray')
plt.subplot(3,2,5)
plt.imshow(l2_feature_map_relu_pool[:,:,0],cmap='gray')
plt.subplot(3,2,6)
plt.imshow(l2_feature_map_relu_pool[:,:,1],cmap='gray')

plt.figure(3)
plt.subplot(3,1,1)
plt.imshow(l3_feature_map,cmap='gray')
plt.subplot(3,1,2)
plt.imshow(l3_feature_map_relu,cmap='gray')
plt.subplot(3,1,3)
plt.imshow(l3_feature_map_relu_pool,cmap='gray')

plt.show()

 First conv layer

 

Second conv layer

 

Third conv layer

 

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5521423.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-13
下一篇 2022-12-13

发表评论

登录后才能评论

评论列表(0条)

保存