Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
注意是先输入p,后输入的a!!
这道题的大概意思就是如果满足条件:
<1> a的p次方对p进行取模运算的结果仍为a
<2>p本身是一个合数
就输出"yes",否则输出"no"
判断<1>直接用二分快速幂,判断<2>可以用sqrt(p)来写。
#includeusing namespace std; #include #include #include #define ll long long ll func(ll a, ll b, ll c) { int ans = 1; while (b) { if (b & 1)ans = ans * a % c; a = a * a % c; b >>= 1; } return ans; } bool f(ll n) { ll x = sqrt(n); for (int i = 2; i <= x; i++) { if (n % i == 0)return true; } return false; } int main() { ll p, a; while (cin >> p >> a && p && a) { if (func(a, p, p) == a &&f(p))cout << "yes" << endl; else cout << "no" << endl; } return 0; }
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)