我们可以
modulus用来模拟的传播行为,
roll/circshift并通过广播索引覆盖所有行,我们将拥有一种完全矢量化的方法,如下所示:
方法2(循环1)n = b.shape[0]idx = n-1 - np.mod(shift.cumsum()[:,None]-1 - np.arange(n), n)a += b[idx].sum(0)
b_ext = np.row_stack((b, b[:-1] ))start_idx = n-1 - np.mod(shift.cumsum()-1,n)for j in range(start_idx.size): a += b_ext[start_idx[j]:start_idx[j]+n]
冒号表示法与使用索引进行切片
一旦进入循环,这里的想法就是做最少的工作。在进入循环之前,我们正在预先计算每个迭代的起始行索引。因此,我们在循环内需要做的所有事情就是使用冒号表示法切片,这是对数组的视图并累加。这应该比
rolling需要计算所有行索引而导致产生昂贵副本的行索引要好得多。
在对冒号和索引进行切片时,这里会更多地介绍视图和复制概念-
In [11]: a = np.random.randint(0,9,(10))In [12]: aOut[12]: array([8, 0, 1, 7, 5, 0, 6, 1, 7, 0])In [13]: a[3:8]Out[13]: array([7, 5, 0, 6, 1])In [14]: a[[3,4,5,6,7]]Out[14]: array([7, 5, 0, 6, 1])In [15]: np.may_share_memory(a, a[3:8])Out[15]: TrueIn [16]: np.may_share_memory(a, a[[3,4,5,6,7]])Out[16]: False
运行时测试
功能定义-
def original_loopy_app(a,b): for j in range(shift.size): b=np.roll(b, shift[j] , axis=0) a += bdef vectorized_app(a,b): n = b.shape[0] idx = n-1 - np.mod(shift.cumsum()[:,None]-1 - np.arange(n), n) a += b[idx].sum(0)def modified_loopy_app(a,b): n = b.shape[0] b_ext = np.row_stack((b, b[:-1] )) start_idx = n-1 - np.mod(shift.cumsum()-1,n) for j in range(start_idx.size): a += b_ext[start_idx[j]:start_idx[j]+n]
情况1:
In [5]: # Setup input arrays ...: N = 200 ...: M = 1000 ...: a = np.random.randint(11,99,(N,N)) ...: b = np.random.randint(11,99,(N,N)) ...: shift = np.random.randint(0,N,M) ...:In [6]: original_loopy_app(a1,b1) ...: vectorized_app(a2,b2) ...: modified_loopy_app(a3,b3) ...:In [7]: np.allclose(a1, a2) # Verify resultsOut[7]: TrueIn [8]: np.allclose(a1, a3) # Verify resultsOut[8]: TrueIn [9]: %timeit original_loopy_app(a1,b1) ...: %timeit vectorized_app(a2,b2) ...: %timeit modified_loopy_app(a3,b3) ...: 10 loops, best of 3: 107 ms per loop10 loops, best of 3: 137 ms per loop10 loops, best of 3: 48.2 ms per loop
情况2:
In [13]: # Setup input arrays (datasets are exactly 1/10th of original sizes) ...: N = 200 ...: M = 10000 ...: a = np.random.randint(11,99,(N,N)) ...: b = np.random.randint(11,99,(N,N)) ...: shift = np.random.randint(0,N,M) ...:In [14]: %timeit original_loopy_app(a1,b1) ...: %timeit modified_loopy_app(a3,b3) ...: 1 loops, best of 3: 1.11 s per loop1 loops, best of 3: 481 ms per loop
因此,我们正在考虑 2x+
使用改进的循环方法来提高速度!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)