首先在windows下启动kafka
启动方法如下:
首先下载kafka,zookeeper安装包
pom.xml
4.0.0
org.springframework.boot
spring-boot-starter-parent
2.1.5.RELEASE
com.cxy
skafka
0.0.1-SNAPSHOT
skafka
Demo project for Spring Boot
1.8 org.springframework.boot spring-boot-starter-weborg.springframework.kafka spring-kafkacom.alibaba fastjson1.2.56 org.projectlombok lomboktrue org.springframework.boot spring-boot-starter-testtest org.springframework.kafka spring-kafka-testtest org.springframework.boot spring-boot-maven-plugin
启动类:
package com.cxy.skafka;
import com.cxy.skafka.component.UserLogProducer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import javax.annotation.PostConstruct;
@SpringBootApplication
public class SkafkaApplication {
public static void main(String[] args) { SpringApplication.run(SkafkaApplication.class, args); } @Autowired private UserLogProducer userLogProducer; @PostConstruct public void init() { for (int i = 0; i < 10; i++) { userLogProducer.sendlog(String.valueOf(i)); } }
}
model
package com.cxy.skafka.model;
import lombok.Data;
import lombok.experimental.Accessors;
@Data
@Accessors
public class Userlog {
private String username;
private String userid;
private String state;
}
producer
package com.cxy.skafka.component;
import com.alibaba.fastjson.JSON;
import com.cxy.skafka.model.Userlog;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Component;
@Component
public class UserLogProducer {
@Autowired
private KafkaTemplate kafkaTemplate;
public void sendlog(String userid){
Userlog userlog = new Userlog();
userlog.setUsername(“cxy”);
userlog.setState(“1”);
userlog.setUserid(userid);
System.err.println(userlog+"1"); kafkaTemplate.send("userLog",JSON.toJSonString(userlog));
}
}
消费者:
package com.cxy.skafka.component;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import java.util.Optional;
@Component
public class UserLogConsumer {
@KafkaListener(topics = {“userLog”})
public void consumer(ConsumerRecord consumerRecord){
Optional kafkaMsg= Optional.ofNullable(consumerRecord.value());
if (kafkaMsg.isPresent()){
Object msg= kafkaMsg.get();
System.err.println(msg);
}
}
}
配置文件:
server.port=8080
#制定kafka代理地址
spring.kafka.bootstrap-servers=localhost:9092
#消息发送失败重试次数
spring.kafka.producer.retries=0
#每次批量发送消息的数量
spring.kafka.producer.batch-size=16384
#每次批量发送消息的缓冲区大小
spring.kafka.producer.buffer-memory=335554432
指定消息key和消息体的编解码方式
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
#=============== consumer =======================
指定默认消费者group idspring.kafka.consumer.group-id=user-log-group
earliest:重置为分区中最小的offset; latest:重置为分区中最新的offset(消费分区中新产生的数据);spring.kafka.consumer.auto-offset-reset=earliest
是否自动提交offsetspring.kafka.consumer.enable-auto-commit=true
提交offset延时(接收到消息后多久提交offset)spring.kafka.consumer.auto-commit-interval=100
指定消息key和消息体的编解码方式spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)