读书的时候,处理数据都是采用matlab,但毕业后当了程序员,matlab从此在自己的电脑上消失了(安装包太大,还要license,启动也好慢,不符合程序员的需求)。
但是最近公司仿真的数据是以matlab的.mat格式存储的,需要读取出来处理,那就找找python相关的库吧,没有python干不了的活!!!
mat文件存储了matlab中变量数据,因此,python读出的mat数据是以k-v形式存储在字典里,key是变量名,value是数据内容:
scipy最先想到的的是scipy工具
import scipy.io as scio
data = scio.loadmat(‘example.mat’)
data[‘loss’]
但是读取有的.mat文件的时,会抛出异常(v7.3版本):
raise NotImplementedError('Please use HDF reader for matlab v7.3 files') NotImplementedError: Please use HDF reader for matlab v7.3 filesh5py
遇到上面的问题,就需要采用h5py库了:
import h5py data=h5py.loadmat('example.mat') data['loss'][:]
但是这样读出来的是file格式,调试的时候都很难知道key是什么,取数据可以按照key来取,但是前提是需要知道key值,不方便独立调试。
mat73今天的主角登场,个人觉得mat73兼容性最好,几乎所有的mat文件都能成功读取,而且读取的结果是k-v的字典,很便于后续处理:
import mat73 data=mat73.loadmat(path) data['loss']mat4py
不推荐,兼容性较差,可能是没有后续更新。
总结总的来说,个人比较推荐使用mat73,兼容各种版本的mat文件,其次可以比较清晰的看到mat文件中保存数据的key值,便于后续的提取。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)