python点到多边形距离
最简单例子:
负数表示在多边形外,正数代表多边形内。
import numpy as np point=(7,7) hull=[[1,1],[1,2],[2,2],[2,1]] dist = cv2.pointPolygonTest(np.array(hull), point, True) print('dist',dist)
缺点:
不能批量计算法,只能一个点一个点的计算。
感谢博客:
使用cv2.pointPolygonTest()和cv2.polylines()的问题-python黑洞网
def gray_res(): import cv2 import numpy as np # create background img = np.zeros((400 ,400) ,dtype=np.uint8) # define shape pts = np.array([[18 ,306] ,[50 ,268] ,[79 ,294] ,[165 ,328] ,[253 ,294] ,[281 ,268] ,[313 ,306] ,[281 ,334] ,[270 ,341] ,[251 ,351] ,[230 ,360] ,[200 ,368] ,[165 ,371] ,[130 ,368] ,[100 ,360] ,[79 ,351] ,[50 ,334] ,[35 ,323]], np.int32) pts = pts.reshape((-1 ,1 ,2)) # draw shape cv2.polylines(img ,[pts] ,True ,(255), 2) # draw point of interest cv2.circle(img ,(52 ,288) ,1 ,(127) ,3) # perform pointPolygonTest dist = cv2.pointPolygonTest(pts, (52 ,288), False) print(dist) # show image cv2.imshow('test', img) cv2.waitKey() cv2.destroyAllWindows() def color_res(): import cv2 import numpy as np point=(52, 208) # create background img = np.zeros((400, 400,3), dtype=np.uint8) # define shape pts = np.array( [[18, 306], [50, 268], [79, 294], [165, 328], [253, 294], [281, 268], [313, 306], [281, 334], [270, 341], [251, 351], [230, 360], [200, 368], [165, 371], [130, 368], [100, 360], [79, 351], [50, 334], [35, 323]], np.int32) pts = pts.reshape((-1, 1, 2)) # draw shape cv2.polylines(img, [pts], True, (0,255,0), 2) # draw point of interest cv2.circle(img, point, 1, (0,0,255), 3) # perform pointPolygonTest dist = cv2.pointPolygonTest(pts, point, True) print(dist) # show image cv2.imshow('test', img) cv2.waitKey() cv2.destroyAllWindows() if __name__ == '__main__': color_res()
感谢博客:
(Python)从零开始,简单快速学机器仿人视觉Opencv---第十九节:关于轮廓的函数 - 古月居
检测凸缺陷
opencv凸缺陷的基础知识_究极目标的博客-CSDN博客_opencv凸缺陷
凸包与轮廓之间的部分,称为凸缺陷。在opencv中凸缺陷的语法格式为:
convexityDefects =cv2.convexityDefects (contour,convexhull)
import cv2 import numpy as np img =cv2.imread("contours2.png")#读图 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转化为灰度图像 ret,binary =cv2.threshold(gray,32,255,0)#阈值处理 contours,h =cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)#查找轮廓 hull =cv2.convexHull(contours[0],returnPoints=False)#获取凸包 defects =cv2.convexityDefects(contours[0],hull) for i in range(defects.shape[0]): s,e,f,d=defects[i,0] start = tuple(contours[0][s][0]) end = tuple(contours[0][e][0]) far = tuple(contours[0][f][0]) cv2.line(img,start,end,(255,255,0))#线条绘制 cv2.circle(img,far,5,(0,255,0)) print(defects) cv2.imshow("img",img)#展示凸包 cv2.waitKey(0)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)