[解题报告] 《算法零基础100讲》(第34讲) 排序入门 - 选择排序

[解题报告] 《算法零基础100讲》(第34讲) 排序入门 - 选择排序,第1张

[解题报告] 《算法零基础100讲》(第34讲) 排序入门 - 选择排序

目录
  • 前言
  • 一、有效三角形的个数
  • 二、重构字符串
  • 三、最多能完成排序的块


前言

跟着英雄哥打卡第三十四天
[专题跳转->《算法零基础100讲》]
[万人千题社区跳转]


一、有效三角形的个数

跳转力扣:611. 有效三角形的个数
难度:★★☆☆☆

说明:双指针,为方便满足三角形原则【 a + b > c , a + c > b , b + c > a a+b>c,a+c>b,b+c>a a+b>c,a+c>b,b+c>a】,只需将数组从小到大排序后满足【 a + b > c a+b>c a+b>c】即可同时满足后两者;由于题目给出数值范围为非负数,则需排除 n u m [ i ] = = 0 num[i]==0 num[i]==0 此情况;将 n u m [ i ] num[i] num[i] 作为 a a a , n u m [ j ] num[j] num[j] 作为 b b b, n u m [ k ] num[k] num[k] 作为 c c c,遍历 a a a ,以 b b b 为基地往右拓展 c c c ,若满足 c < a + b c < a + b c c a + b > c a+b>c 的边界情况中最大值 c c c,此时的 k k k 为延伸的最远的下标,遍历每一个 a a a ,累加 ( k − j ) (k - j) (k−j) 即为最终答案。

代码如下(示例):

class Solution {
public:
    int triangleNumber(vector& nums) {
        int n = nums.size(), ans = 0;
        sort(nums.begin(), nums.end());
        for (int i = 0; i < n; i ++) {
            if (nums[i] == 0) continue;
            int k = i + 1;
            for (int j = i + 1; j < n; j ++) {
                while (k + 1 < n && nums[k + 1] < nums[i] + nums[j])
                    k ++;
                ans += k - j;
            }

        }
        return ans;
    }
};
二、重构字符串

跳转力扣:767. 重构字符串
难度:★★☆☆☆

说明:大根堆,哈希表,首先用哈希表 m s ms ms 记录每一个字母出现的次数,并记录出现次数最大值 m a x n maxn maxn,若要有满足条件结果,需满足 m a x n maxn maxn 大于原字符串长度的一半;大根堆 h e a p heap heap 存放的元素为 p a i r < i n t , c h a r > pair pair (方便排序,所以把int放前面),首先将所有出现的字母放进堆中,然后每次取出出现次数最大与次大的两个元素作为答案并循环 *** 作,每次需将取出的元素的字母次数减一,若扔有次数则重新加入堆中,为保证奇偶的差异,需要在补充最后一个元素。

代码如下(示例):

typedef pair pic;
class Solution {
public:
    string reorganizeString(string s) {
        int maxn = 0, n = s.size();
        if (n < 2) return s;
        unordered_map ms;
        for (auto &c: s) {
            ms[c] ++;
            maxn = max(ms[c], maxn);
        }
        if (maxn > (n + 1) / 2) return "";

        priority_queue heap;
        for (auto &m: ms) {
            heap.push({m.second, m.first});
        }
        string ans;
        while (heap.size() > 1) {
            auto t1 = heap.top(); heap.pop();
            auto t2 = heap.top(); heap.pop();
            ms[t1.second] --;
            ms[t2.second] --;
            ans += t1.second;
            ans += t2.second;
            if (ms[t1.second] > 0)
                heap.push({t1.first - 1, t1.second});
            if (ms[t2.second] > 0)
                heap.push({t2.first - 1, t2.second});
        }
        if (heap.size() > 0)
            ans += heap.top().second;
        return ans;
    }
};
三、最多能完成排序的块

跳转力扣:769. 最多能完成排序的块

难度:★★☆☆☆

说明:贪心算法,分块最多的情况是升序排序,分块最少的情况是降序排序,因此保证遍历到的每个元素是遍历到的数中的最大值,则可以分块处理。

代码如下(示例):

class Solution {
public:
    int maxChunksToSorted(vector& arr) {
        int n = arr.size(), maxn = 0, ans = 0;
        for (int i = 0; i < n; i ++) {
            maxn = max(maxn, arr[i]);
            if (i == maxn) ans ++;
        }
        return ans;
    }
};

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5579774.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-14
下一篇 2022-12-14

发表评论

登录后才能评论

评论列表(0条)

保存