我要说的第一件事是不要
eigh用于测试正定性,因为
eigh假定输入为Hermitian。这可能就是为什么您认为引用的答案不起作用的原因。
我不喜欢那个答案,因为它有一个迭代(而且我不明白它的例子),也没有那里的另一个答案,它不能保证为您提供
最佳 的正定矩阵,即最接近正定矩阵的矩阵。以Frobenius范数(元素的平方和)表示的输入。(我完全不知道问题中的代码应该做什么。)
我喜欢Higham 1988年
论文的Matlab实现:https
:
//www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd,所以我将其移植到了Python:
from numpy import linalg as ladef nearestPD(A): """Find the nearest positive-definite matrix to input A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB pre [1], which credits [2]. [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd [2] N.J. Higham, "Computing a nearest symmetric positive semidefinite matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6 """ B = (A + A.T) / 2 _, s, V = la.svd(B) H = np.dot(V.T, np.dot(np.diag(s), V)) A2 = (B + H) / 2 A3 = (A2 + A2.T) / 2 if isPD(A3): return A3 spacing = np.spacing(la.norm(A)) # The above is different from [1]. It appears that MATLAB's `chol` Cholesky # decomposition will accept matrixes with exactly 0-eigenvalue, whereas # Numpy's will not. So where [1] uses `eps(mineig)` (where `eps` is Matlab # for `np.spacing`), we use the above definition. CAVEAT: our `spacing` # will be much larger than [1]'s `eps(mineig)`, since `mineig` is usually on # the order of 1e-16, and `eps(1e-16)` is on the order of 1e-34, whereas # `spacing` will, for Gaussian random matrixes of small dimension, be on # othe order of 1e-16. In practice, both ways converge, as the unit test # below suggests. I = np.eye(A.shape[0]) k = 1 while not isPD(A3): mineig = np.min(np.real(la.eigvals(A3))) A3 += I * (-mineig * k**2 + spacing) k += 1 return A3def isPD(B): """Returns true when input is positive-definite, via Cholesky""" try: _ = la.cholesky(B) return True except la.LinAlgError: return Falseif __name__ == '__main__': import numpy as np for i in xrange(10): for j in xrange(2, 100): A = np.random.randn(j, j) B = nearestPD(A) assert(isPD(B)) print('unit test passed!')
除了只查找最接近的正定矩阵外,上述库还包括
isPD使用Cholesky分解确定矩阵是否为正定矩阵。这样,您就不需要任何公差-
任何需要正定的函数都可以在其上运行Cholesky,因此,这是确定正定的绝对最佳方法。
最后,它还具有基于Monte Carlo的单元测试。如果将其放入
posdef.py并运行
pythonposdef.py,它将在我的笔记本电脑上运行约一秒钟的单元测试。然后可以在代码中
importposdef调用
posdef.nearestPD或
posdef.isPD。
如果您这样做的话,代码也要点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)