Dataset API。这是两个部分:
(1): Convert numpy array to tfrecords和
(2,3,4):read the tfrecords to generate batches。1. 从一个numpy数组创建tfrecords:
2. 使用Dataset API(tensorflow > = 1.2)读取tfrecords:def npy_to_tfrecords(...): # write records to a tfrecords file writer = tf.python_io.TFRecordWriter(output_file) # Loop through all the features you want to write for ... : let say X is of np.array([[...][...]]) let say y is of np.array[[0/1]] # Feature contains a map of string to feature proto objects feature = {} feature['X'] = tf.train.Feature(float_list=tf.train.FloatList(value=X.flatten())) feature['y'] = tf.train.Feature(int64_list=tf.train.Int64List(value=y)) # Construct the Example proto object example = tf.train.Example(features=tf.train.Features(feature=feature)) # Serialize the example to a string serialized = example.SerializeToString() # write the serialized objec to the disk writer.write(serialized) writer.close()
# Creates a dataset that reads all of the examples from filenames. filenames = ["file1.tfrecord", "file2.tfrecord", ..."fileN.tfrecord"] dataset = tf.contrib.data.TFRecordDataset(filenames) # for version 1.5 and above use tf.data.TFRecordDataset # example proto depre def _parse_function(example_proto): keys_to_features = {'X':tf.FixedLenFeature((shape_of_npy_array), tf.float32), 'y': tf.FixedLenFeature((), tf.int64, default_value=0)} parsed_features = tf.parse_single_example(example_proto, keys_to_features) return parsed_features['X'], parsed_features['y'] # Parse the record into tensors. dataset = dataset.map(_parse_function) # Shuffle the dataset dataset = dataset.shuffle(buffer_size=10000) # Repeat the input indefinitly dataset = dataset.repeat() # Generate batches dataset = dataset.batch(batch_size) # Create a one-shot iterator iterator = dataset.make_one_shot_iterator() # Get batch X and y X, y = iterator.get_next()
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)