一些自由使用
MAGIC
pd.concat([ df.assign( **{x: 'Total' for x in 'abc'[i:]} ).groupby(list('abc')).sum() for i in range(4) ]).sort_index() Sce1 Sce2 Sce3 Sce4 Sce5 Sc6a b c Animal Air Eagle 1.0 0.1 0.1 0.6 0.9 0.1 Owl 0.3 0.1 0.5 0.3 0.5 0.9 Total 1.3 0.2 0.6 0.9 1.4 1.0 Ground Cat 0.6 0.5 0.3 0.5 1.0 0.2 Dog 0.0 0.9 0.5 0.0 0.3 0.4 Total 0.6 1.4 0.8 0.5 1.3 0.6 Total Total 1.9 1.6 1.4 1.4 2.7 1.6Object metal Bike 0.5 0.1 0.4 0.7 0.4 0.2 Car 0.3 0.3 0.8 0.6 0.5 0.6 Total 0.8 0.4 1.2 1.3 0.9 0.8 Total Total 2.6 1.6 1.9 2.3 2.0 2.3 Wood Chair 0.9 0.6 0.1 0.9 0.2 0.8 Table 0.9 0.6 0.6 0.1 0.9 0.7 Total 1.8 1.2 0.7 1.0 1.1 1.5Total Total Total 4.5 3.2 3.3 3.7 4.7 3.9
我可以完全按照您的要求
pd.concat([ df.assign( **{x: '' for x in 'abc'[i:]} ).groupby(list('abc')).sum() for i in range(1, 4) ]).sort_index() Sce1 Sce2 Sce3 Sce4 Sce5 Sc6a b c Animal 1.9 1.6 1.4 1.4 2.7 1.6 Air 1.3 0.2 0.6 0.9 1.4 1.0 Eagle 1.0 0.1 0.1 0.6 0.9 0.1 Owl 0.3 0.1 0.5 0.3 0.5 0.9 Ground 0.6 1.4 0.8 0.5 1.3 0.6 Cat 0.6 0.5 0.3 0.5 1.0 0.2 Dog 0.0 0.9 0.5 0.0 0.3 0.4Object 2.6 1.6 1.9 2.3 2.0 2.3 metal 0.8 0.4 1.2 1.3 0.9 0.8 Bike 0.5 0.1 0.4 0.7 0.4 0.2 Car 0.3 0.3 0.8 0.6 0.5 0.6 Wood1.8 1.2 0.7 1.0 1.1 1.5 Chair 0.9 0.6 0.1 0.9 0.2 0.8 Table 0.9 0.6 0.6 0.1 0.9 0.7
至于如何!我将其留给读者练习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)