发布我自己的解决方案,以防其他人遇到此问题。基本上,您只需执行输入函数的反函数即可。
def postprocess_image(img, in_shape): class_image = tf.argmax(img, axis=2) colored_class_image = utils.class_image_to_image_tensor(class_image, [HEIGHT,WIDTH]) image_expand = tf.expand_dims(colored_class_image, 0) image_r = tf.image.resize_bilinear(image_expand, in_shape, align_corners=False) casted_data = tf.bitcast(tf.cast(image_r[0], tf.int8), tf.uint8) out_image = tf.image.enpre_png(casted_data) return out_imagesess = K.get_session()g = sess.graphg_def = graph_util.convert_variables_to_constants(sess, g.as_graph_def(),[model.output.name.replace(':0','')])with tf.Graph().as_default() as g_input: input_b64 = tf.placeholder(shape=(1,), dtype=tf.string, name='b64') tf.logging.info('input b64 {}'.format(input_b64)) image = tf.image.depre_image(input_b64[0]) image_f = tf.image.convert_image_dtype(image, dtype=tf.uint8) input_image = tf.expand_dims(image_f, 0) image_r = tf.image.resize_bilinear(input_image, [HEIGHT, WIDTH], align_corners=False) input_data = preprocess_image(image_r[0]) output = tf.identity(input_data, name='input_image')with tf.Graph().as_default() as g_output: first = tf.placeholder(shape=[1,473,473,150], dtype=tf.float32, name='activation_58/div') i_shape = tf.placeholder(dtype=tf.int32, shape=[2], name='in_shape') post_image = postprocess_image(first[0], i_shape) output_data = tf.identity(post_image, name='out')g_input_def = g_input.as_graph_def()g_output_def = g_output.as_graph_def()with tf.Graph().as_default() as g_combined: x = tf.placeholder(tf.string, name="b64") in_shape = tf.placeholder(tf.int32, shape=[1,2],name="original_shape") im, = tf.import_graph_def(g_input_def, input_map={'b64:0': x}, return_elements=["input_image:0"]) pred, = tf.import_graph_def(g_def, input_map={model.input.name: im}, return_elements=[model.output.name]) y, = tf.import_graph_def(g_output_def, input_map={model.output.name: pred, 'in_shape:0':in_shape[0]}, return_elements=["out:0"]) with tf.Session() as session: inputs = {"image_bytes": tf.saved_model.utils.build_tensor_info(x), "original_shape":tf.saved_model.utils.build_tensor_info(in_shape)} outputs = {"output_bytes":tf.saved_model.utils.build_tensor_info(y)} signature =tf.saved_model.signature_def_utils.build_signature_def( inputs=inputs, outputs=outputs, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME ) """Convert the Keras HDF5 model into TensorFlow SavedModel.""" if os.path.exists(export_path): shutil.rmtree(export_path) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder = saved_model_builder.SavedModelBuilder(export_path) builder.add_meta_graph_and_variables( sess=session, tags=[tag_constants.SERVING], signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }, ) builder.save()
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)