全网最详细的大数据ELK文章系列,强烈建议收藏加关注!
新文章都已经列出历史文章目录,帮助大家回顾前面的知识重点。
目录
基本 *** 作
一、根据ID检索指定职位数据
2、编写测试用例
二、修改职位
1、实现步骤
2、编写测试用例
三、根据文档ID删除职位
1、实现步骤
2、编写测试用例
四、根据关键字检索数据
1、实现步骤
2、编写测试用例
五、分页检索
1、实现步骤
2、编写测试用例
六、scroll分页检索
1、实现步骤
2、编写测试用例
七、高亮查询
1、高亮查询简介
2、高亮显示的html分析
3、实现高亮查询
八、完整参考代码
基本 *** 作 一、根据ID检索指定职位数据
1、实现步骤
- 构建GetRequest请求。
- 使用RestHighLevelClient.get发送GetRequest请求,并获取到ES服务器的响应。
- 将ES响应的数据转换为JSON字符串
- 并使用FastJSON将JSON字符串转换为JobDetail类对象
- 记得:单独设置ID
参考代码:
@Override public JobDetail findById(long id) throws IOException { // 1. 构建GetRequest请求。 GetRequest getRequest = new GetRequest(JOB_IDX_NAME, id + ""); // 2. 使用RestHighLevelClient.get发送GetRequest请求,并获取到ES服务器的响应。 GetResponse response = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT); // 3. 将ES响应的数据转换为JSON字符串 String json = response.getSourceAsString(); // 4. 并使用FastJSON将JSON字符串转换为JobDetail类对象 JobDetail jobDetail = JSONObject.parseObject(json, JobDetail.class); // 5. 设置ID字段 jobDetail.setId(id); return jobDetail; }2、编写测试用例
参考代码:
@Test public void findByIdTest() throws IOException { JobDetail jobDetail = jobFullTextService.findById(1); System.out.println(jobDetail); }二、修改职位 1、实现步骤
- 判断对应ID的文档是否存在
- 构建GetRequest
- 执行client的exists方法,发起请求,判断是否存在
- 构建UpdateRequest请求
- 设置UpdateRequest的文档,并配置为JSON格式
- 执行client发起update请求
参考代码:
@Override public void update(JobDetail jobDetail) throws IOException { // 1. 判断对应ID的文档是否存在 // a) 构建GetRequest GetRequest getRequest = new GetRequest(JOB_IDX_NAME, jobDetail.getId() + ""); // b) 执行client的exists方法,发起请求,判断是否存在 boolean exists = restHighLevelClient.exists(getRequest, RequestOptions.DEFAULT); if(!exists) return; // 2. 构建UpdateRequest请求 UpdateRequest updateRequest = new UpdateRequest(JOB_IDX_NAME, jobDetail.getId() + ""); // 3. 设置UpdateRequest的文档,并配置为JSON格式 updateRequest.doc(JSON.toJSonString(jobDetail), XContentType.JSON); // 4. 执行client发起update请求 restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT); }2、编写测试用例
-
将ID为1的职位信息查询出来
-
将职位的名称设置为:”大数据开发工程师”
-
执行更新 *** 作
-
再打印查看职位的名称是否成功更新
参考代码:
@Test public void updateTest() throws IOException { JobDetail jobDetail = jobFullTextService.findById(1); jobDetail.setTitle("大数据开发工程师"); jobFullTextService.update(jobDetail); System.out.println(jobFullTextService.findById(1)); }三、根据文档ID删除职位 1、实现步骤
- 构建delete请求
- 使用RestHighLevelClient执行delete请求
参考代码:
@Override public void deleteById(long id) throws IOException { // 1. 构建delete请求 DeleteRequest deleteRequest = new DeleteRequest(JOB_IDX_NAME, id + ""); // 2. 使用client执行delete请求 restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT); }
2、编写测试用例
- 在测试用例中执行根据ID删除文档 *** 作
- 使用VSCode发送请求,查看指定ID的文档是否已经被删除
参考代码:
@Test public void deleteByIdTest() throws IOException { jobFullTextService.deleteById(1); }四、根据关键字检索数据 1、实现步骤
- 构建SearchRequest检索请求
- 创建一个SearchSourceBuilder专门用于构建查询条件
- 使用QueryBuilders.multiMatchQuery构建一个查询条件(搜索title、jd),并配置到SearchSourceBuilder
- 调用SearchRequest.source将查询条件设置到检索请求
- 执行RestHighLevelClient.search发起请求
- 遍历结果
- 获取命中的结果
- 将JSON字符串转换为对象
- 使用SearchHit.getId设置文档ID
参考代码:
@Override public List2、编写测试用例searchByKeywords(String keywords) throws IOException { // 1. 构建SearchRequest检索请求 SearchRequest searchRequest = new SearchRequest(JOB_IDX_NAME); // 2. 创建一个SearchSourceBuilder专门用于构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 3. 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder MultiMatchQueryBuilder queryBuilder = QueryBuilders.multiMatchQuery(keywords, "jd", "title"); searchSourceBuilder.query(queryBuilder); // 4. 调用SearchRequest.source将查询条件设置到检索请求 searchRequest.source(searchSourceBuilder); // 5. 执行RestHighLevelClient.search发起请求 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 6. 遍历结果 SearchHits hits = searchResponse.getHits(); List jobDetailList = new ArrayList<>(); for (SearchHit hit : hits) { // 1) 获取命中的结果 String json = hit.getSourceAsString(); // 2) 将JSON字符串转换为对象 JobDetail jobDetail = JSON.parseObject(json, JobDetail.class); // 3) 使用SearchHit.getId设置文档ID jobDetail.setId(Long.parseLong(hit.getId())); jobDetailList.add(jobDetail); } return jobDetailList; }
搜索标题、职位描述中包含销售的职位
@Test public void searchByKeywordsTest() throws IOException { List五、分页检索 1、实现步骤jobDetailList = jobFullTextService.searchByKeywords("销售"); for (JobDetail jobDetail : jobDetailList) { System.out.println(jobDetail); } }
步骤和之前的关键字搜索类似,只不过构建查询条件的时候,需要加上分页的设置
- 构建SearchRequest检索请求
- 创建一个SearchSourceBuilder专门用于构建查询条件
- 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder
- 设置SearchSourceBuilder的from和size参数,构建分页
- 调用SearchRequest.source将查询条件设置到检索请求
- 执行RestHighLevelClient.search发起请求
- 遍历结果
- 获取命中的结果
- 将JSON字符串转换为对象
- 使用SearchHit.getId设置文档ID
- 将结果封装到Map结构中(带有分页信息)
- total -> 使用SearchHits.getTotalHits().value获取到所有的记录数
- content -> 当前分页中的数据
@Override public Map2、编写测试用例searchByPage(String keywords, int pageNum, int pageSize) throws IOException { // 1. 构建SearchRequest检索请求 SearchRequest searchRequest = new SearchRequest(JOB_IDX_NAME); // 2. 创建一个SearchSourceBuilder专门用于构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 3. 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder MultiMatchQueryBuilder queryBuilder = QueryBuilders.multiMatchQuery(keywords, "jd", "title"); searchSourceBuilder.query(queryBuilder); // 4. 设置SearchSourceBuilder的from和size参数,构建分页 searchSourceBuilder.from((pageNum – 1) * pageSize); searchSourceBuilder.size(pageSize); // 4. 调用SearchRequest.source将查询条件设置到检索请求 searchRequest.source(searchSourceBuilder); // 5. 执行RestHighLevelClient.search发起请求 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 6. 遍历结果 SearchHits hits = searchResponse.getHits(); List jobDetailList = new ArrayList<>(); for (SearchHit hit : hits) { // 1) 获取命中的结果 String json = hit.getSourceAsString(); // 2) 将JSON字符串转换为对象 JobDetail jobDetail = JSON.parseObject(json, JobDetail.class); // 3) 使用SearchHit.getId设置文档ID jobDetail.setId(Long.parseLong(hit.getId())); jobDetailList.add(jobDetail); } // 8. 将结果封装到Map结构中(带有分页信息) // a) total -> 使用SearchHits.getTotalHits().value获取到所有的记录数 // b) content -> 当前分页中的数据 Map result = new HashMap<>(); result.put("total", hits.getTotalHits().value); result.put("content", jobDetailList); return result; }
- 搜索关键字为“销售”,查询第0页,每页显示10条数据
- 打印搜索结果总记录数、对应分页的记录
参考代码:
@Test public void searchByPageTest() throws IOException { Map六、scroll分页检索 1、实现步骤resultMap = jobFullTextService.searchByPage("销售", 0, 10); System.out.println("总共:" + resultMap.get("total")); List jobDetailList = (List )resultMap.get("content"); for (JobDetail jobDetail : jobDetailList) { System.out.println(jobDetail); } }
判断scrollId是否为空
- 如果为空,那么首次查询要发起scroll查询,设置滚动快照的有效时间
- 如果不为空,就表示之前应发起了scroll,直接执行scroll查询就可以
步骤和之前的关键字搜索类似,只不过构建查询条件的时候,需要加上分页的设置
scrollId为空:
- 构建SearchRequest检索请求
- 创建一个SearchSourceBuilder专门用于构建查询条件
- 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder
- 调用SearchRequest.source将查询条件设置到检索请求
- 设置每页多少条记录,调用SearchRequest.scroll设置滚动快照有效时间
- 执行RestHighLevelClient.search发起请求
- 遍历结果
- 获取命中的结果
- 将JSON字符串转换为对象
- 使用SearchHit.getId设置文档ID
- 将结果封装到Map结构中(带有分页信息)
- scroll_id -> 从SearchResponse中调用getScrollId()方法获取scrollId
- content -> 当前分页中的数据
scollId不为空:
- 用之前查询出来的scrollId,构建SearchScrollRequest请求
- 设置scroll查询结果的有效时间
- 使用RestHighLevelClient执行scroll请求
@Override public MapsearchByScrollPage(String keywords, String scrollId, int pageSize) { Map result = new HashMap<>(); List jobList = new ArrayList<>(); try { SearchResponse searchResponse = null; if(scrollId == null) { // 1. 创建搜索请求 SearchRequest searchRequest = new SearchRequest("job_idx"); // 2. 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.multiMatchQuery(keywords, "title", "jd")); // 3. 设置分页大小 searchSourceBuilder.size(pageSize); // 4. 设置查询条件、并设置滚动快照有效时间 searchRequest.source(searchSourceBuilder); searchRequest.scroll(Timevalue.timevalueMinutes(1)); // 5. 发起请求 searchResponse = client.search(searchRequest, RequestOptions.DEFAULT); } else { SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId); searchScrollRequest.scroll(Timevalue.timevalueMinutes(1)); searchResponse = client.scroll(searchScrollRequest, RequestOptions.DEFAULT); } // 6. 迭代响应结果 SearchHits hits = searchResponse.getHits(); for (SearchHit hit : hits) { JobDetail jobDetail = JSONObject.parseObject(hit.getSourceAsString(), JobDetail.class); jobDetail.setId(Long.parseLong(hit.getId())); jobList.add(jobDetail); } result.put("content", jobList); result.put("scroll_id", searchResponse.getScrollId()); } catch (IOException e) { e.printStackTrace(); } return result; }
2、编写测试用例
- 编写第一个测试用例,不带scrollId查询
- 编写第二个测试用例,使用scrollId查询
@Test public void searchByScrollPageTest1() throws IOException { Map七、高亮查询 1、高亮查询简介result = jobFullTextService.searchByScrollPage("销售", null, 10); System.out.println("scrollId: " + result.get("scrollId")); List content = (List )result.get("content"); for (JobDetail jobDetail : content) { System.out.println(jobDetail); } } @Test public void searchByScrollPageTest2() throws IOException { Map result = jobFullTextService.searchByScrollPage("销售", "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAA0WRG4zZFVwODJSU2Uxd1BOWkQ4cFdCQQ==", 10); System.out.println("scrollId: " + result.get("scrollId")); List content = (List )result.get("content"); for (JobDetail jobDetail : content) { System.out.println(jobDetail); } }
在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮。
京东商城搜索"笔记本"
2、高亮显示的html分析通过开发者工具查看高亮数据的html代码实现
ElasticSearch可以对查询出的内容中关键字部分进行标签和样式的设置,但是你需要告诉ElasticSearch使用什么标签对高亮关键字进行包裹
3、实现高亮查询- 在我们构建查询请求时,我们需要构建一个HighLightBuilder,专门来配置高亮查询。
- 构建一个HighlightBuilder
- 设置高亮字段(title、jd)
- 设置高亮前缀()
- 设置高亮后缀()
- 将高亮添加到SearchSourceBuilder
代码如下:
// 设置高亮 HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.field("title"); highlightBuilder.field("jd"); highlightBuilder.preTags(""); highlightBuilder.postTags(""); searchSourceBuilder.highlighter(highlightBuilder);
- 我们将高亮的查询结果取出,并替换掉原先没有高亮的结果
- 获取高亮字段
- 获取title高亮字段
- 获取jd高亮字段
- 将高亮字段进行替换普通字段
- 处理title高亮,判断高亮是否为空,不为空则将高亮碎片拼接在一起
- 替换原有普通字段
- 获取高亮字段
参考代码:
// 1. 获取高亮字段 Map八、完整参考代码highlightFieldMap = hit.getHighlightFields(); // 1.1 获取title高亮字段 HighlightField titleHl = highlightFieldMap.get("title"); // 1.2 获取jd高亮字段 HighlightField jdHl = highlightFieldMap.get("jd"); // 2. 将高亮字段进行替换普通字段 // 2.1 处理title高亮,判断高亮是否为空,不为空则将高亮Fragment(碎片)拼接在一起,替换原有普通字段 if(titleHl != null) { Text[] fragments = titleHl.getFragments(); StringBuilder stringBuilder = new StringBuilder(); for (Text fragment : fragments) { stringBuilder.append(fragment.string()); } jobDetail.setTitle(stringBuilder.toString()); } // 2.2 处理jd高亮 if(jdHl != null) { Text[] fragments = jdHl.getFragments(); StringBuilder stringBuilder = new StringBuilder(); for (Text fragment : fragments) { stringBuilder.append(fragment.string()); } jobDetail.setJd(stringBuilder.toString()); }
public class JobFullTextServiceImpl implements JobFullTextService { private RestHighLevelClient restHighLevelClient; private static final String JOB_IDX_NAME = "job_idx"; public JobFullTextServiceImpl() { restHighLevelClient = new RestHighLevelClient(RestClient.builder( new HttpHost("node1", 9200, "http") , new HttpHost("node2", 9200, "http") , new HttpHost("node3", 9200, "http") )); } @Override public void add(JobDetail jobDetail) { // 1. 构建IndexRequest对象,用来描述ES发起请求的数据。 IndexRequest indexRequest = new IndexRequest(JOB_IDX_NAME); // 2. 设置文档ID。 indexRequest.id(jobDetail.getId() + ""); // 3. 构建一个实体类对象,并使用FastJSON将实体类对象转换为JSON。 String json = JSON.toJSonString(jobDetail); // 4. 使用IndexRequest.source方法设置请求数据。 indexRequest.source(json, XContentType.JSON); try { // 5. 使用ES High level client调用index方法发起请求 restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT); } catch (IOException e) { e.printStackTrace(); } System.out.println("索引创建成功!"); } @Override public void update(JobDetail jobDetail) throws IOException { // 1. 判断对应ID的文档是否存在 // a) 构建GetRequest GetRequest getRequest = new GetRequest(JOB_IDX_NAME, jobDetail.getId() + ""); // b) 执行client的exists方法,发起请求,判断是否存在 boolean exists = restHighLevelClient.exists(getRequest, RequestOptions.DEFAULT); if(!exists) return; // 2. 构建UpdateRequest请求 UpdateRequest updateRequest = new UpdateRequest(JOB_IDX_NAME, jobDetail.getId() + ""); // 3. 设置UpdateRequest的文档,并配置为JSON格式 updateRequest.doc(JSON.toJSonString(jobDetail), XContentType.JSON); // 4. 执行client发起update请求 restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT); } @Override public JobDetail findById(long id) throws IOException { // 1. 构建GetRequest请求。 GetRequest getRequest = new GetRequest(JOB_IDX_NAME, id + ""); // 2. 使用RestHighLevelClient.get发送GetRequest请求,并获取到ES服务器的响应。 GetResponse response = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT); // 3. 将ES响应的数据转换为JSON字符串 String json = response.getSourceAsString(); // 4. 并使用FastJSON将JSON字符串转换为JobDetail类对象 JobDetail jobDetail = JSONObject.parseObject(json, JobDetail.class); // 5. 设置ID字段 jobDetail.setId(id); return jobDetail; } @Override public void deleteById(long id) throws IOException { // 1. 构建delete请求 DeleteRequest deleteRequest = new DeleteRequest(JOB_IDX_NAME, id + ""); // 2. 使用client执行delete请求 restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT); } @Override public ListsearchByKeywords(String keywords) throws IOException { // 1. 构建SearchRequest检索请求 SearchRequest searchRequest = new SearchRequest(JOB_IDX_NAME); // 2. 创建一个SearchSourceBuilder专门用于构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 3. 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder MultiMatchQueryBuilder queryBuilder = QueryBuilders.multiMatchQuery(keywords, "jd", "title"); searchSourceBuilder.query(queryBuilder); // 4. 调用SearchRequest.source将查询条件设置到检索请求 searchRequest.source(searchSourceBuilder); // 5. 执行RestHighLevelClient.search发起请求 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 6. 遍历结果 SearchHits hits = searchResponse.getHits(); List jobDetailList = new ArrayList<>(); for (SearchHit hit : hits) { // 1) 获取命中的结果 String json = hit.getSourceAsString(); // 2) 将JSON字符串转换为对象 JobDetail jobDetail = JSON.parseObject(json, JobDetail.class); // 3) 使用SearchHit.getId设置文档ID jobDetail.setId(Long.parseLong(hit.getId())); jobDetailList.add(jobDetail); } return jobDetailList; } @Override public Map searchByPage(String keywords, int pageNum, int pageSize) throws IOException { // 1. 构建SearchRequest检索请求 SearchRequest searchRequest = new SearchRequest(JOB_IDX_NAME); // 2. 创建一个SearchSourceBuilder专门用于构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 3. 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder MultiMatchQueryBuilder queryBuilder = QueryBuilders.multiMatchQuery(keywords, "jd", "title"); searchSourceBuilder.query(queryBuilder); // 4. 设置SearchSourceBuilder的from和size参数,构建分页 searchSourceBuilder.from(pageNum); searchSourceBuilder.size(pageSize); // 4. 调用SearchRequest.source将查询条件设置到检索请求 searchRequest.source(searchSourceBuilder); // 5. 执行RestHighLevelClient.search发起请求 SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); // 6. 遍历结果 SearchHits hits = searchResponse.getHits(); List jobDetailList = new ArrayList<>(); for (SearchHit hit : hits) { // 1) 获取命中的结果 String json = hit.getSourceAsString(); // 2) 将JSON字符串转换为对象 JobDetail jobDetail = JSON.parseObject(json, JobDetail.class); // 3) 使用SearchHit.getId设置文档ID jobDetail.setId(Long.parseLong(hit.getId())); jobDetailList.add(jobDetail); } // 8. 将结果封装到Map结构中(带有分页信息) // a) total -> 使用SearchHits.getTotalHits().value获取到所有的记录数 // b) content -> 当前分页中的数据 Map result = new HashMap<>(); result.put("total", hits.getTotalHits().value); result.put("content", jobDetailList); return result; } @Override public Map searchByScrollPage(String keywords, String scrollId, int pageSize) throws IOException { SearchResponse searchResponse = null; if(scrollId == null) { // 1. 构建SearchRequest检索请求 SearchRequest searchRequest = new SearchRequest(JOB_IDX_NAME); // 2. 创建一个SearchSourceBuilder专门用于构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 3. 使用QueryBuilders.multiMatchQuery构建一个查询条件,并配置到SearchSourceBuilder MultiMatchQueryBuilder queryBuilder = QueryBuilders.multiMatchQuery(keywords, "jd", "title"); searchSourceBuilder.query(queryBuilder); searchSourceBuilder.size(pageSize); // 设置高亮查询 HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.preTags(""); highlightBuilder.postTags(""); highlightBuilder.field("title"); highlightBuilder.field("jd"); searchSourceBuilder.highlighter(highlightBuilder); // 4. 调用searchRequest.scroll设置滚动快照有效时间 searchRequest.scroll(Timevalue.timevalueMinutes(10)); // 5. 调用SearchRequest.source将查询条件设置到检索请求 searchRequest.source(searchSourceBuilder); // 6. 执行RestHighLevelClient.search发起请求 searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); } else { SearchScrollRequest searchScrollRequest = new SearchScrollRequest(scrollId); searchScrollRequest.scroll(Timevalue.timevalueMinutes(10)); searchResponse = restHighLevelClient.scroll(searchScrollRequest, RequestOptions.DEFAULT); } if(searchResponse != null) { // 7. 遍历结果 SearchHits hits = searchResponse.getHits(); List jobDetailList = new ArrayList<>(); for (SearchHit hit : hits) { // 1) 获取命中的结果 String json = hit.getSourceAsString(); // 2) 将JSON字符串转换为对象 JobDetail jobDetail = JSON.parseObject(json, JobDetail.class); // 3) 使用SearchHit.getId设置文档ID jobDetail.setId(Long.parseLong(hit.getId())); // 1. 获取高亮字段 Map highlightFieldMap = hit.getHighlightFields(); // 1.1 获取title高亮字段 HighlightField titleHl = highlightFieldMap.get("title"); // 1.2 获取jd高亮字段 HighlightField jdHl = highlightFieldMap.get("jd"); // 2. 将高亮字段进行替换普通字段 // 2.1 处理title高亮,判断高亮是否为空,不为空则将高亮Fragment(碎片)拼接在一起,替换原有普通字段 if(titleHl != null) { Text[] fragments = titleHl.getFragments(); StringBuilder stringBuilder = new StringBuilder(); for (Text fragment : fragments) { stringBuilder.append(fragment.string()); } jobDetail.setTitle(stringBuilder.toString()); } // 2.2 处理jd高亮 if(jdHl != null) { Text[] fragments = jdHl.getFragments(); StringBuilder stringBuilder = new StringBuilder(); for (Text fragment : fragments) { stringBuilder.append(fragment.string()); } jobDetail.setJd(stringBuilder.toString()); } jobDetailList.add(jobDetail); } // 8. 将结果封装到Map结构中(带有分页信息) // a) total -> 使用SearchHits.getTotalHits().value获取到所有的记录数 // b) content -> 当前分页中的数据 Map result = new HashMap<>(); result.put("scrollId", searchResponse.getScrollId()); result.put("content", jobDetailList); return result; } return null; } @Override public void close() { try { restHighLevelClient.close(); } catch (IOException e) { e.printStackTrace(); } } }
- 博客主页:https://lansonli.blog.csdn.net
- 欢迎点赞 收藏 ⭐留言 如有错误敬请指正!
- 本文由 Lansonli 原创,首发于 CSDN博客
- 大数据系列文章会每天更新,停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)