使用
Pool:
import osimport pandas as pd from multiprocessing import Pool# wrap your csv importer in a function that can be mappeddef read_csv(filename): 'converts a filename to a pandas dataframe' return pd.read_csv(filename)def main(): # get a list of file names files = os.listdir('.') file_list = [filename for filename in files if filename.split('.')[1]=='csv'] # set up your pool with Pool(processes=8) as pool: # or whatever your hardware can support # have your pool map the file names to dataframes df_list = pool.map(read_csv, file_list) # reduce the list of dataframes to a single dataframe combined_df = pd.concat(df_list, ignore_index=True)if __name__ == '__main__': main()
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)