- 一、理论推导
- 二、代码实践
- 参考
通过下式求解狗腿法的步长和方向。
对应于下图情况
其中alpha的求解已经在式(3)中推导出来,还剩下beta没有求解,下面为beta的求解方案。
最后通过roi的值,来更新新的点
#include参考#include #include #include #include using namespace std; using namespace Eigen; const double DERIV_STEP = 1e-5; const int MAX_ITER = 100; #define max(a,b) (((a)>(b))?(a):(b)) double func(const VectorXd& input, const VectorXd& output, const VectorXd& params, double objIndex) { // obj = A * sin(Bx) + C * cos(D*x) - F double x1 = params(0); double x2 = params(1); double x3 = params(2); double x4 = params(3); double t = input(objIndex); double f = output(objIndex); return x1 * sin(x2 * t) + x3 * cos(x4 * t) - f; } //return vector make up of func() element. VectorXd objF(const VectorXd& input, const VectorXd& output, const VectorXd& params) { VectorXd obj(input.rows()); for (int i = 0; i < input.rows(); i++) obj(i) = func(input, output, params, i); return obj; } //F = (f ^t * f)/2 double Func(const VectorXd& obj) { //平方和,所有误差的平方和 return obj.squaredNorm() / 2; } double Deriv(const VectorXd& input, const VectorXd& output, int objIndex, const VectorXd& params, int paraIndex) { VectorXd para1 = params; VectorXd para2 = params; para1(paraIndex) -= DERIV_STEP; para2(paraIndex) += DERIV_STEP; double obj1 = func(input, output, para1, objIndex); double obj2 = func(input, output, para2, objIndex); return (obj2 - obj1) / (2 * DERIV_STEP); } MatrixXd Jacobin(const VectorXd& input, const VectorXd& output, const VectorXd& params) { int rowNum = input.rows(); int colNum = params.rows(); MatrixXd Jac(rowNum, colNum); for (int i = 0; i < rowNum; i++) { for (int j = 0; j < colNum; j++) { Jac(i, j) = Deriv(input, output, i, params, j); } } return Jac; } void dogLeg(const VectorXd& input, const VectorXd& output, VectorXd& params) { int errNum = input.rows(); //error num int paraNum = params.rows(); //parameter num VectorXd obj = objF(input, output, params); MatrixXd Jac = Jacobin(input, output, params); //jacobin VectorXd gradient = Jac.transpose() * obj; //gradient //initial parameter tao v epsilon1 epsilon2 double eps1 = 1e-12, eps2 = 1e-12, eps3 = 1e-12; double radius = 1.0; bool found = obj.norm() <= eps3 || gradient.norm() <= eps1; if (found) return; double last_sum = 0; int iterCnt = 0; while (iterCnt < MAX_ITER) { VectorXd obj = objF(input, output, params); MatrixXd Jac = Jacobin(input, output, params); //jacobin VectorXd gradient = Jac.transpose() * obj; //gradient if (gradient.norm() <= eps1) { cout << "stop F'(x) = g(x) = 0 for a global minimizer optimizer." << endl; break; } if (obj.norm() <= eps3) { cout << "stop f(x) = 0 for f(x) is so small"; break; } //compute how far go along stepest descent direction. double alpha = gradient.squaredNorm() / (Jac * gradient).squaredNorm(); //compute gauss newton step and stepest descent step. VectorXd stepest_descent = -alpha * gradient; VectorXd gauss_newton = (Jac.transpose() * Jac).inverse() * Jac.transpose() * obj * (-1); double beta = 0; //compute dog-leg step. VectorXd dog_leg(params.rows()); if (gauss_newton.norm() <= radius) dog_leg = gauss_newton; else if (alpha * stepest_descent.norm() >= radius) dog_leg = (radius / stepest_descent.norm()) * stepest_descent; else { VectorXd a = alpha * stepest_descent; VectorXd b = gauss_newton; double c = a.transpose() * (b - a); if (c <= 0) { beta = (sqrt(c*c + (b - a).squaredNorm()*(radius*radius - a.squaredNorm())) - c) / (b - a).squaredNorm(); } else { beta = (radius*radius - a.squaredNorm()) / (sqrt(c*c + (b - a).squaredNorm()*(radius*radius - a.squaredNorm())) - c); } dog_leg = alpha * stepest_descent + beta * (gauss_newton - alpha * stepest_descent); } cout << "dog-leg: " << endl << dog_leg << endl; if (dog_leg.norm() <= eps2 * (params.norm() + eps2)) { cout << "stop because change in x is small" << endl; break; } VectorXd new_params(params.rows()); new_params = params + dog_leg; cout << "new parameter is: " << endl << new_params << endl; //compute f(x) obj = objF(input, output, params); //compute f(x_new) VectorXd obj_new = objF(input, output, new_params); //compute delta F = F(x) - F(x_new) double deltaF = Func(obj) - Func(obj_new); //compute delat L =L(0)-L(dog_leg) double deltaL = 0; if (gauss_newton.norm() <= radius) deltaL = Func(obj); else if (alpha * stepest_descent.norm() >= radius) deltaL = radius * (2 * alpha*gradient.norm() - radius) / (2.0*alpha); else { VectorXd a = alpha * stepest_descent; VectorXd b = gauss_newton; double c = a.transpose() * (b - a); if (c <= 0) { beta = (sqrt(c*c + (b - a).squaredNorm()*(radius*radius - a.squaredNorm())) - c) / (b - a).squaredNorm(); } else { beta = (radius*radius - a.squaredNorm()) / (sqrt(c*c + (b - a).squaredNorm()*(radius*radius - a.squaredNorm())) - c); } deltaL = alpha * (1 - beta)*(1 - beta)*gradient.squaredNorm() / 2.0 + beta * (2.0 - beta)*Func(obj); } double roi = deltaF / deltaL; if (roi > 0) { params = new_params; } if (roi > 0.75) { radius = max(radius, 3.0 * dog_leg.norm()); } else if (roi < 0.25) { radius = radius / 2.0; if (radius <= eps2 * (params.norm() + eps2)) { cout << "trust region radius is too small." << endl; break; } } cout << "roi: " << roi << " dog-leg norm: " << dog_leg.norm() << endl; cout << "radius: " << radius << endl; iterCnt++; cout << "Iterator " << iterCnt << " times" << endl << endl; } } int main(int argc, char* argv[]) { // obj = A * sin(Bx) + C * cos(D*x) - F //there are 4 parameter: A, B, C, D. int num_params = 4; //generate random data using these parameter int total_data = 100; VectorXd input(total_data); VectorXd output(total_data); double A = 5, B = 1, C = 10, D = 2; //load observation data for (int i = 0; i < total_data; i++) { //generate a random variable [-10 10] double x = 20.0 * ((rand() % 1000) / 1000.0) - 10.0; double deltaY = 2.0 * (rand() % 1000) / 1000.0; double y = A * sin(B*x) + C * cos(D*x) + deltaY; input(i) = x; output(i) = y; } //gauss the parameters VectorXd params_gaussNewton(num_params); //init gauss params_gaussNewton << 3.6, 1.4, 6.2, 1.7; VectorXd params_dogLeg = params_gaussNewton; dogLeg(input, output, params_dogLeg); cout << "dog-leg parameter: " << endl << params_dogLeg << endl << endl << endl; }
1:https://blog.csdn.net/stihy/article/details/52737723
2:https://blog.csdn.net/qq_35590091/article/details/94628887
3:https://zhuanlan.zhihu.com/p/94589862
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)