目录
1.环境准备
2.开始搭建
1. 安装anaconda:(请参考这位大佬做法,不过建议不要换源)
2.可以选择为yolov5 单独创建一个环境(点击creat,然后重新安装包,大佬教程有)
3.conda 安装
4.yolov5 require 安装
—————————至此,所有准备工作完成————————
3.文件布局
1.新建一个文件夹名字自取(我的叫self date)
4.修改文件
1.coco128.yaml
2.detect . py
3.train.py
5.打标签
————至此,所有准备工作完成—————————————
下面开始讲解可能的报错
1.环境准备1.yolov5 初始官方代码下载:yolov5下载
2.anaconda准备:Anaconda | Individual Edition
3.conda准备:Start Locally | PyTorch
4.官方数据集:coco128
5.打标签的工具:labelme下载
6.
2.开始搭建 1. 安装anaconda:(请参考这位大佬做法,不过建议不要换源)史上最全最详细的Anaconda安装教程_wq_ocean_的博客-CSDN博客_anaconda 安装
装好后,可在 开始 找到如下:
2.可以选择为yolov5 单独创建一个环境(点击creat,然后重新安装包,大佬教程有)不过为了教学方便,这里就直接使用初始的环境
3.conda 安装1.找到电脑对应版本:点击nvidia控制面板,然后点击系统信息,组件(具体 *** 作请参考这位大佬如何查看windows的CUDA版本_天泪哈哈的博客-CSDN博客_查看cuda版本)
2.官网下载,打开网页:Start Locally | PyTorch
选择对应版本
然后打开
(先输入
conda uninstall pytorch (如果没用,试试下面的)
pip uninstall torch
pip uninstall torch # 需要跑两次pip uninstall
防止以前安装过其他版本,造成报错
pytorch Key already registered with the same priority: GroupSpatialSoftmax
)可选,建议报错后再试
输入run this command代码(如果搭建了虚拟环境,需要安装在环境里面)
然后就是漫长的等待。。。。。。。
4.yolov5 require 安装
1.打开spydder ide(懒得下别的,vs想要pip 很麻烦,pycharm又占内存)
2. 新建一个项目,使用已有文件夹,然后把整个anaconda3放进去(方便找文件)
3.在控制台输入 pip install -r requirements.txt
或者直接打开然后一个一个输入
—————————至此,所有准备工作完成———————— 3.文件布局 1.新建一个文件夹名字自取(我的叫self date)(为了方便日后多数据集的训练)
內部因含有3个文件夹和2个文件
images 内新建文件夹train和test(不可改位置与名字,因为我也不知道那个py文件定的位)
labels 内新建文件夹train和text(不可改位置与名字,因为我也不知道那个文件定的位)
need to detect images 存放需要识别的图片位置
train里面分别放图片与labels(只认txt)
best.pt 为识别好后的权重文件,位置可以改
coco128.yaml为需要修改的数据表,建议按照下面修改
# COCO 2017 dataset http://cocodataset.org - first 128 training images # Train command: python train.py --data coco128.yaml # Default dataset location is next to YOLOv5: # /parent # /datasets/coco128 # /yolov5 # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] #path: ../datasets/coco128 # dataset root dir #注释 train: self date/images/train # 存放位置 val: self date/images/train # 存放位置 这种写法要将文件放在self date里面 test: # test images (optional) # Classes nc: 80 # 类别数目 names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # 标签名称 要与打的对齐 # Download script/URL (optional) #download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip #注释
就是这样
4.修改文件 1.coco128.yaml(按照上述修改就好)
2.detect . py主要修改一下调用的模型种类(s,m,l,x)
和识别的位置与保存名称与路径
这边直接上修改好的代码(方便注释)
"""Run inference with a YOLOv5 model on images, videos, directories, streams Usage: $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640 """ import argparse import sys import time from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn FILE = Path(__file__).absolute() sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box from utils.plots import colors, plot_one_box from utils.torch_utils import select_device, load_classifier, time_synchronized @torch.no_grad() def run(weights='yolov5s.pt', # model.pt path(s) source='data/images', # file/dir/URL/glob, 0 for webcam imgsz=640, # inference size (pixels) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project='runs/detect', # 保存文件位置 name='exp', # 保存文件名字 下面还有个要一起改 exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference ): save_img = not nosave and not source.endswith('.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check image size names = model.module.names if hasattr(model, 'module') else model.names # get class names if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet50', n=2) # initialize modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once t0 = time.time() for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=augment, visualize=increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False)[0] # Apply NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count else: p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + 'n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') # Stream results if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_frame_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_frame_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) if save_txt or save_img: s = f"n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") if update: strip_optimizer(weights) # update model (to fix SourceChangeWarning) print(f'Done. ({time.time() - t0:.3f}s)') def parse_opt(): parser = argparse.ArgumentParser() #修改权重路径 parser.add_argument('--weights', nargs='+', type=str, default=r'E:anaconda3opencv kejianyolov5-masterself datebest.pt', help='model.pt path(s)') #修改测试图片路径 parser.add_argument('--source', type=str, default=r'E:anaconda3opencv kejianyolov5-masterself dateneed to detect images', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') #改保存文件名字 上面那个一起改 parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') opt = parser.parse_args() return opt def main(opt): print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)3.train.py
"""Train a YOLOv5 model on a custom dataset Usage: $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 """ import argparse import logging import os import random import sys import time import warnings from copy import deepcopy from pathlib import Path from threading import Thread import math import numpy as np import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm FILE = Path(__file__).absolute() sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path import val # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.datasets import create_dataloader from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, check_requirements, print_mutation, set_logging, one_cycle, colorstr from utils.google_utils import attempt_download from utils.loss import ComputeLoss from utils.plots import plot_images, plot_labels, plot_results, plot_evolution from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume from utils.metrics import fitness logger = logging.getLogger(__name__) LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) def train(hyp, # path/to/hyp.yaml or hyp dictionary opt, device, ): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, opt.resume, opt.noval, opt.nosave, opt.workers # Directories save_dir = Path(save_dir) wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Hyperparameters if isinstance(hyp, str): with open(hyp,encoding='utf-8') as f: hyp = yaml.safe_load(f) # load hyps dict logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings with open(save_dir / 'hyp.yaml', 'w',encoding='utf-8') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w',encoding='utf-8') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Configure plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(1 + RANK) with open(data,encoding='utf-8') as f: data_dict = yaml.safe_load(f) # data dict # Loggers loggers = {'wandb': None, 'tb': None} # loggers dict if RANK in [-1, 0]: # TensorBoard if not evolve: prefix = colorstr('tensorboard: ') logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") loggers['tb'] = SummaryWriter(str(save_dir)) # W&B opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None run_id = run_id if opt.resume else None # start fresh run if transfer learning wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb if loggers['wandb']: data_dict = wandb_logger.data_dict weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['items'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g pkq found for nc=%g dataset in %s' % (len(names), nc, data) # check is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(RANK): check_dataset(data_dict) # check train_path = data_dict['train'] val_path = data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#oneCycleLR if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_val = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: raise Exception('can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998') model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1) # Process 0 if RANK in [-1, 0]: valloader = create_dataloader(val_path, imgsz_val, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, workers=workers, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir, loggers) if loggers['tb']: loggers['tb'].add_histogram('classes', c, 0) # TensorBoard # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class logger.info(f'Image sizes {imgsz} train, {imgsz_val} valn' f'Using {dataloader.num_workers} dataloader workersn' f'Logging results to {save_dir}n' f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if RANK in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if RANK != -1: indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if RANK != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if RANK != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Print if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 3: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() if loggers['tb'] and ni == 0: # TensorBoard with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress jit trace warning loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) elif plots and ni == 10 and loggers['wandb']: wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() # DDP process 0 or single-GPU if RANK in [-1, 0]: # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) final_epoch = epoch + 1 == epochs if not noval or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz_val, model=ema.ema, single_cls=single_cls, dataloader=valloader, save_dir=save_dir, save_json=is_coco and final_epoch, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + 'n') # append metrics, val_loss # Log tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if loggers['tb']: loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard if loggers['wandb']: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if loggers['wandb']: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.n') if plots: plot_results(save_dir=save_dir) # save as results.png if loggers['wandb']: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) if not evolve: if is_coco: # COCO dataset for m in [last, best] if best.exists() else [last]: # speed, mAP tests results, _, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz_val, model=attempt_load(m, device).half(), single_cls=single_cls, dataloader=valloader, save_dir=save_dir, save_json=True, plots=False) # Strip optimizers for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if loggers['wandb']: # Log the stripped model loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['latest', 'best', 'stripped']) wandb_logger.finish_run() torch.cuda.empty_cache() return results def parse_opt(known=False): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default=r'self datebest.pt', help='initial weights path')#修改处 parser.add_argument('--cfg', type=str, default=r'modelsyolov5s.yaml', help='model.yaml path')#修改处 parser.add_argument('--data', type=str, default=r'self datecoco128.yaml', help='dataset.yaml path')#修改处 parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[384, 384], help='[train, val] image sizes') ''' '--weigths':选择自己的权重文件路径,本文选择的是yolov5s.pt文件。 '--cfg':选择自己模型所在的路径。 '--data':之前配置文件时修改的yaml文件所在的路径。 '--epochs':训练过程中整个数据集将被迭代多少次,显卡不行需要调小点。 '--batch-size':一次看完多少张图片才进行权重更新,显卡不行需要调小点。 '--images-size':输入图片宽高,显卡不行需要调小点。 ''' parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--noval', action='store_true', help='only validate final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers')#修改处 parser.add_argument('--project', default='runs/train', help='save to project/name') parser.add_argument('--entity', default=None, help='W&B entity') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--linear-lr', action='store_true', help='linear LR') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') opt = parser.parse_known_args()[0] if known else parser.parse_args() return opt def main(opt): set_logging(RANK) if RANK in [-1, 0]: print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) check_git_status() check_requirements(exclude=['thop']) # Resume wandb_run = check_wandb_resume(opt) if opt.resume and not wandb_run: # resume an interrupted run ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.safe_load(f)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate logger.info('Resuming training from %s' % ckpt) else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, val) opt.name = 'evolve' if opt.evolve else opt.name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: from datetime import timedelta assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60)) assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count' assert not opt.image_weights, '--image-weights argument is not compatible with DDP training' # Train if not opt.evolve: train(opt.hyp, opt, device) if WORLD_SIZE > 1 and RANK == 0: _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')] # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final oneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0), # image mixup (probability) 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) with open(opt.hyp) as f: hyp = yaml.safe_load(f) # load hyps dict if 'anchors' not in hyp: # anchors commented in hyp.yaml hyp['anchors'] = 3 assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve' opt.noval, opt.nosave = True, True # only val/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(opt.evolve): # generations to evolve if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}n' f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}') def run(**kwargs): # Usage: import train; train.run(imgsz=320, weights='yolov5m.pt') opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) if __name__ == "__main__": opt = parse_opt() main(opt)5.打标签
借鉴这位大佬
labelme使用教程_fengyingv的博客-CSDN博客_labelme使用教程
记得在train里面分别放图片与labels(只认txt)
————至此,所有准备工作完成————————————— 下面开始讲解可能的报错1.NVIDIA GeForce RTX 3060 Laptop GPU with CUDA capability sm_86 is not compatible with the current PyT
显卡太高级,cuda跟不上,要下个高级版的
2.Key already registered with the same priority: GroupSpatialSoftmax
安装了2个pytorch 运行pip uninstall torch多次,然后重新安装
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)